Advertisement

Numerische Mathematik

, Volume 40, Issue 1, pp 1–29 | Cite as

Approximation of general arch problems by straight beam elements

  • M. Bernadou
  • Y. Ducatel
Article

Summary

In this paper, we approximate the solution of a problem of a general arch by a nonconforming method using straight beam elements and taking into account numerical integration. Compatibility conditions which have to be satisfied at the mesh points are given. These conditions ensure for this method the same order of convergence as usual conforming finite element methods.

Subject Classifications

AMS (MOS): 65N30 73K05 73K15 73K25. CR: 5.17 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bernadou, M.: Sur l'analyse numérique du modèle linéraire de coques minces de W.T. Koiter. Thèse d'Etat, Paris VI, Juin 1978Google Scholar
  2. 2.
    Bernadou, M.: Convergence of conforming finite element methods for general shell problems. Internat. J. Engrg. Sci.18, 249–276 (1980)Google Scholar
  3. 3.
    Bernadou, M., Ciarlet, P.G.: Sur l'ellipticité du modèle linéraire de coques de W.T. Koiter. Computing Methods in Applied Sciences and Engineering. Lecture Notes in Economics and Mathematical Systems, Vol.134, pp. 89–136, Springer Berlin Heidelberg New York, 1976Google Scholar
  4. 4.
    Bernadou, M., Ducatel, Y.: Some remarks about the approximation of general shell problem by flat plate elements. (To appear)Google Scholar
  5. 5.
    Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, 1978Google Scholar
  6. 6.
    Ciarlet, P.G.: On question of existence in shell theory. J. Indian Math. Soc.40, 131–143 (1976)Google Scholar
  7. 7.
    Clough, R.W.: The finite element method after twenty five years: a personal view. Computers and Structures,12, 361–370 (1980)Google Scholar
  8. 8.
    Clough, R.W., Johnson, C.P.: A finite element approximation for the analysis of thin shells. Internat. J. Solids and Structures4, 43–60 (1968)Google Scholar
  9. 9.
    Clough, R.W., Johnson, C.P.: Finite element analysis of arbitrary thin shells. Proceedings ACI Symposium on concrete thin shells, pp. 333–363, New York, 1970Google Scholar
  10. 10.
    Dawe, D.J.: Shell analysis using a simple facet element. J. Strain Anal.7, 266–270 (1972)Google Scholar
  11. 11.
    Dawe, D.J.: Some high-order elements for arches and shells. In: Finite Elements for Thin Shells and Curved Members. Ashwell, D.G., Gallagher, R.H. (eds.). London: J. Wiley and Sons, pp. 131–153, 1976Google Scholar
  12. 12.
    Gellert, M., Laursen, M.E.: Formulation and convergence of a mixed finite element method applied to elastic arches of arbitrary geometry and loading. Comput. Methods Appl. Mech. Engrg.7, 285–302 (1976)Google Scholar
  13. 13.
    Ishihara, K.: A finite element lumped mass scheme for solving eigenvalue problems of circular arches. Numer. Math.36, 267–290 (1981)Google Scholar
  14. 14.
    Johnson, C.: On finite element methods for curved shells using flat elements. In: Numerische Behandlung von Differentialgleichungen, pp. 147–154. International Series of Numerical Mathematics, Vol. 27, Basel, Stuttgart: Birkhäuser Verlag, 1975Google Scholar
  15. 15.
    Kikuchi, F.: On the validity of an approximation available in the finite element shell analysis. Computers and Structures5, 1–8 (1975)Google Scholar
  16. 16.
    Kikuchi, F.: On the validity of the finite element analysis of circular arches represented by an assemblage of beam elements. Comput. Methods Appl. Mech. Engrg.5, 253–276 (1975)Google Scholar
  17. 17.
    Koiter, W.T.: On the nonlinear theory of thin elastic shells. Proc. Kon. Ned. Akad. Wetensch.B69, 1–54 (1966)Google Scholar
  18. 18.
    Koiter, W.T.: On the foundations of the linear theory of thin elastic shells. Proc. Kon. Ned. Akad. Wetensch.B73, 169–195 (1970)Google Scholar
  19. 19.
    Moan, T.: A note on the convergence of finite element approximation for problems formulated in curvilinear coordinate systems. Comput. Methods Appl. Mech. Engrg.3, 209–235 (1974)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • M. Bernadou
    • 1
  • Y. Ducatel
    • 2
  1. 1.Domaine de Voluceau-RocquencourtI.N.R.I.A.Le Chesnay Cedex
  2. 2.Département de MathématiquesUniversité de PoitiersPoitiers Cedex

Personalised recommendations