Skip to main content
Log in

Critical lines for type-III aqueous mixtures by generalized corresponding-states models

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

An algorithm has been developed for calculating the gas-gas critical line of type-III binary fluid mixtures for extended corresponding-states (ECS) models. The algorithm searches for an extremum in pressure on the spinodal curve of an isothermal pressure-composition phase diagram of a binary mixture. The method has been applied to solutions of carbon dioxide and of nitrogen in water. starting at the water critical point. Two variants of ECS have been tested for their ability to represent reliablePVTx data in the nitrogen-water mixture. It is demonstrated that in the latter system both ECS variants produce an artifact in the gas-gas critical line in the range of 0–0.2 mole fraction of nitrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. H. Van Konynenburg and R. L. Scott.Phil. Trans. Roy Soc. 98: 48 (1980).

    Google Scholar 

  2. NIST Thermophysical Properties of Hydrocarbon Mixtures Database, SUPERTRAPP. Version 1.04 (Natl. Inst. Stand. Tech., Gaithersburg, MD, 1992).

  3. NIST Mixture Property Program. NIST14, Version 9.08 (Natl. Inst. Stand. Tech., Gaithersburg. MD. 1993).

  4. K. D. Romig. Jr.. and H. J. M. Hanley.Cryogenics 26: 33 (1986): 29:65 (1989).

    Google Scholar 

  5. A. Fenghour. W. A. Wakeham. D. Ferguson, A. C. Scott, and J. T. R. Watson,J. Chem. Thermodyn. 25: 831 (1993).

    Google Scholar 

  6. J. S. Gallagher, R. Crovetto, and J. M. H. Levelt Sengers.J. Phys. Chem. Ref. Data 22: 431 (1993).

    Google Scholar 

  7. J. S. Gallagher, J. M. H. Levelt Sengers, I. M. Abdulagatov. J. T. R. Watson, and A. Fenghour. NIST Teelt. Note 1404 (U.S. Government Printing Office. Washington, DC, 1993).

    Google Scholar 

  8. L. Haar, J. S. Gallagher, and G. S. Kell,NBS'NRC Steam Tables (Hemisphere. Washington, DC. 1984).

    Google Scholar 

  9. A. van Pelt. C. J. Peters, and J. de Swaan Arons,J. Chem. Phys. 95: 7569 (1991).

    Google Scholar 

  10. D. G. Friend and J. F. Ely.Fluid Phase Equil.79: 77 (1992).

    Google Scholar 

  11. I. M. Abdulagatov, A. R. Bazacv, and A. E. Ramazanova.Int. J. Thermophys. 14: 231 (1993).

    Google Scholar 

  12. K. Tödheide and E. U. Franck,Z. Phys. Chem. N.F 37: 387 (1963).

    Google Scholar 

  13. M. L. Lapas and E. U. Franck.Ber. Bunsenges. Phys. Chem. 89: 793 (1985).

    Google Scholar 

  14. S. Takenouchi and G. C. Kennedy,Am. J. Sci. 262: 1055 (1964).

    Google Scholar 

  15. A. E. Mather and E. U. Franck,J. Phys. Chem. 96: 6 (1992).

    Google Scholar 

  16. D. S. Tsiklis and N. Ya. Maslennikova,Dokl. Akad. Nauk. SSSR 161: 645 (1965): V. M. Prokhorov and D. S. Tsiklis. Russ. J. Phys. Chem. 44:1173 (1970).

    Google Scholar 

  17. B. E. Eaton, J. Stecki, P. Wielopolski, and H. J. M. Hanley,J. Res. Natl. Bur. Stand. USA 86: 419 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallagher, J.S., Friend, D.G., Given, J.A. et al. Critical lines for type-III aqueous mixtures by generalized corresponding-states models. Int J Thermophys 15, 1271–1278 (1994). https://doi.org/10.1007/BF01458835

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01458835

Key words

Navigation