Skip to main content
Log in

Modeling phase equilibria in polymer-solvent systems for process design

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

An excess Gibbs energy model is presented for calculating phase equilibria in multicomponent systems containing polymers and solvents. The model represents a combination of a physical contribution obtained from a lattice model and a chemical contribution that accounts for association and solvation effects. The lattice model is based on a revised version of Freed's latticc-field theory developed by Hu, Prausnitz, and co-workers. The model accurately represents solvent activities and liquid-liquid equilibria in binary and ternary polymer solutions over wide ranges of temperature and polymer molecular weight. It is capable of reproducing liquid-liquid equilibria with upper and lower critical solution temperatures as well as closed-loop and hourglass-shaped phase diagrams. Because of its numerical simplicity, a reasonably small number of binary parameters, and its applicability to multicomponent systems, the model cm be useful for modeling industrial processes involving polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. J. Flory,J. Chem. Phys. 10:51 (1943).

    Google Scholar 

  2. H. Tompa,Polymer Solutions (Butterworth, London, 1956).

    Google Scholar 

  3. R. Koningsveld and L. A. Kleintjens,Macromolecules 4:637 (1971).

    Google Scholar 

  4. C. Qian, S. J. Mumby, and B. E. Eichinger,Macromolecules 24:1655 (1991).

    Google Scholar 

  5. H. S. Elbro, Aa. Fredenslund, and P. Rasmussen,Macromolecules 23:4707 (1990).

    Google Scholar 

  6. C. C. Chen,Fluid Phase Equil. 83:301 (1993).

    Google Scholar 

  7. J. Dudowicz, K. F. Freed, and W. G. Madden,Macromolecules 23:4803 (1990).

    Google Scholar 

  8. Y. Hu, S. M. Lambert, D. S. Soane, and J. M. Prausnitz,Macromolecules 24:4353 (1991).

    Google Scholar 

  9. T. Oishi and J. M. Prausnitz,Ind. Eng. Chem. Process Des. Der. 17:333 (1978).

    Google Scholar 

  10. M. S. High and R. P. Danner,Fluid Phase Equil. 53:323 (1989).

    Google Scholar 

  11. F. Chen, A. Fredenslund, and P. Rasmussen,Ind Eng. Chem. Res. 29:875 (1990).

    Google Scholar 

  12. B. A. Veytsman,J. Phys. Chem. 94:8499 (1990).

    Google Scholar 

  13. G. N. Malcolm and J. S. Rowlinson,Trans. Faraday Soc. 53:921 (1957).

    Google Scholar 

  14. M. Herskowitz and M. Gottlieb,J. Chem. Eng. Data 30:233 (1985).

    Google Scholar 

  15. R. Corneliussen, S. A. Rice, and H. Yamakawa,J. Chem. Phys. 38:1768 (1963).

    Google Scholar 

  16. K. S. Siow, G. Delmas, and D. Patterson,Macromolecules 5:29 (1972).

    Google Scholar 

  17. J. Hashizume, A. Teramoto, and H. Fujita,J. Polym. Sci. Polym. Phys. Ed. 19:1405 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderko, A. Modeling phase equilibria in polymer-solvent systems for process design. Int J Thermophys 15, 1221–1229 (1994). https://doi.org/10.1007/BF01458830

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01458830

Key words

Navigation