Skip to main content
Log in

Simulation of bead-and-spring chain models for semidilute polymer solutions in shear flow

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

We report preliminary results of simulations of the steady-state rheological behavior for semidilute polymer solutions of head-and-spring chain models in planar Couette now. The simulations include examination of the effects of excluded volume. hydrodynamic interactions and density. Hydrodynamic interactions are modeled by the Rotne -Prager Yamakawa tensor. The simulations are based on the nonequilibrium Brownian dynamics algorithm of Ermak and McCammon. In addition to the spring potential between neighboring beads in the chain. the interaction between any two beads in the solution is modeled using a shifted, repulsive Leonard-Jones potential. Lees Edward sliding brick boundary conditions are used for consistency with the Couette flow field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. B. Bird, R. C. Armstrong, and O. Hassager.Dynamics of Polymeric Liquids: Fluid Mechanics, Vol. 1, 2nd ed. (Wiley, New York, 1987).

    Google Scholar 

  2. R. B. Bird, C. F. Curtiss, R. C. Armstrong, and O. Hassager.Dynamics of Polymeric Liquids: Kinetic Theory, Vol. 2, 2nd ed. (Wiley, New York, 1987).

    Google Scholar 

  3. J. W. Rudisill and P. T. Cummings,J. Non-Newt. Fluid Mech. 41:275 (1991).

    Google Scholar 

  4. J. W. Rudisill, S. W. Fetsko, and P. T. Cumings,Comp. Polym. Sci. 3:23 (1993).

    Google Scholar 

  5. S. W. Fetsko and P. T. Cummings, submitted for publication (1994).

  6. B. H. A. A. van den Beule,J. Non-Newt. Fluid Mech. 47:357 (1993).

    Google Scholar 

  7. A. W. Lees and S. F. Edwards.J. Phys. C Solid State 5:1931 (1972).

    Google Scholar 

  8. W. Hess,Rheol. Acta 23:477 (1984).

    Google Scholar 

  9. R. C.-Y. Ng and L. G. Leal,Rheol. Acta 32:25 (1993).

    Google Scholar 

  10. W. W. Graessley,Adv. Polym. Sci. 16:1 (1974).

    Google Scholar 

  11. G. S. Grest and K. Kremer,Phys. Rev. A 33:3628 (1986).

    Google Scholar 

  12. K. Kremer, G. S. Grest, and I. Carmesin.Phys. Rev. Lett. 61:566 (1988).

    Google Scholar 

  13. I. Bitzanis and G. Hadziioannou.J. Chem. Phys. 92:3837 (1990).

    Google Scholar 

  14. J. W. Rudisill and P. T. Cummings,Rheol. Acta 30:33 (1991).

    Google Scholar 

  15. B. Z. Dlugogorski, I. Grmela, and P. I. Carreau,J. Non-Neat. Fl. Mech. 48:303 (1993).

    Google Scholar 

  16. B. Z. Dlugogorski, I. Grmela, and P. J. Carreau,J. Non-Newt. Fl. Mech. 49:23 (1993).

    Google Scholar 

  17. D. L. Ermak and J. A. McCammon,J. Chem. Phys. 69:1353 (1978).

    Google Scholar 

  18. F. G. Diaz, J. Garcia de la Torre, and J. J. Freire,Polymer 30:359 (1989).

    Google Scholar 

  19. H. A. Kramers,Physica 11:1 (1944).

    Google Scholar 

  20. A. Peterlin,Makromol. Chem. 44:338 (1961).

    Google Scholar 

  21. A. Peterlin,J. Chem. Phys. 33:1799 (1960).

    Google Scholar 

  22. A. J. Kishbaugh and A. J. McHugh,J. Non-Newt. Fluid Mech. 34:181 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fetsko, S.W., Cummings, P.T. Simulation of bead-and-spring chain models for semidilute polymer solutions in shear flow. Int J Thermophys 15, 1085–1091 (1994). https://doi.org/10.1007/BF01458817

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01458817

Key words

Navigation