Skip to main content

Syzygies of canonical curves and special linear series

This is a preview of subscription content, access via your institution.

References

  1. [A-H] Abarello, E. Harris, J.: Canonical curves and quadrics of rank 4. Comp. Math.43. 145–179 (1981)

    Google Scholar 

  2. [Be] Behnke, K.: On projective resolutions of Frobenius algebras, and Gorenstein rings Math. Ann.257 219–238 (1981)

    Google Scholar 

  3. [Beau] Beauville, A.: Surfaces algébriques complexes. Astérisque54, (1978)

  4. [B-E1] Buchsbaum, D.A., Eisenbud, D.: What makes a complex exact? J. Alg.25, 259–268 (1973)

    Google Scholar 

  5. [B-E2] Buchsbaum, D.A., Eisenbud, D.: Generic free resolutions and a family of generically perfect ideals. Adv. Math.18, 245–301 (1975)

    Google Scholar 

  6. [B-E3] Buchsbaum, D.A., Eisenbud, D.: Algebra structures for finite free resolutions and some structure theorems for ideals in codimension 3. Am. J. Math.99, 447–485 (1977)

    Google Scholar 

  7. [E1] Eisenbud, D.: Transcanonical embeddings of hyperelliptic curves. J. Pure Appl. Alg.19, 77–83 (1980)

    Google Scholar 

  8. [E2] Eisenbud, D.: A second course in commutative algebra. Brandeis lecture notes, to appear

  9. [E-R-S] Eisenbud, D., Riemenschneider, O., Schreyer, F.-O.: Resolutions of Cohen-Macaulay algebras. Math. Ann.257, 85–98 (1981)

    Google Scholar 

  10. [E-N] Eagon, J., Northcott, D.G.: Ideals defined by matrices and a certain complex associated to them. Proc. Roy. Soc. A269, 188–204 (1962)

    Google Scholar 

  11. [G-O] Geramita, A.V., Orecchia, F.: On the Cohen-Macaulay type ofs lines inA n+1. J. Alg.70, 116–140 (1981)

    Google Scholar 

  12. [G] Green, M.: Koszul cohomology and the geometry of projective varieties. J. Differ. Geom.19, 125–171 (1984)

    Google Scholar 

  13. [G-H] Griffith, Ph., Harris, J.: Principles of algebraic geometry. New York: Wiley 1978

    Google Scholar 

  14. [Gr] Grothendieck, A.: Théorèmes de dualité pour les faisceaux algebraic cohérents. Séminaire Bourbaki 9e année 1956/57, Exposé 149: Sécretariat mathématique (1959)

  15. [Ha] Harris, J.,: A bound on the geometric genus of projective varieties. Ann. Scuola Norm. Pisa8, 35–68 (1981)

    Google Scholar 

  16. [Hi] Hilbert, D.: Über die Theorie der algebraischen Formen. Math. Ann.36, 473–534 (1890)

    Google Scholar 

  17. [Ke] Kempf, G.: Schubert methods with an application to algebraic curves. Amsterdam: Publication of Mathematisch Zentrum 1971

    Google Scholar 

  18. [K-L] Kleiman, S., Laksov, P.: Another proof of the existence of special divisors. Acta Math.132, 163–176 (1974)

    Google Scholar 

  19. [Ma] Maroni, A.: Le serie lineari speciali sulle curve trigonali. Ann. Mat.25, 341–354 (1946)

    Google Scholar 

  20. [N] Noether, M.: Über die invariante Darstellung algebraischer Funktionen. Math. Ann.17, 163–284 (1880)

    Google Scholar 

  21. [P] Petri, K.: Über die invariante Darstellung algebraischer Funktionen einer Variablen. Math. Ann.88, 243–289 (1923)

    Google Scholar 

  22. [S-D] Saint-Donat, B.: On Petri's analysis of the linear system of quadrics through a canonical curve. Math. Ann.206, 157–175 (1973)

    Google Scholar 

  23. [Sch] Schreyer, F.-O.: Syzygies of curves with special pencils. Thesis, Brandeis 1983

  24. [X] Xambo, S.: On projective varieties of minimal degree. Coll. Math.32, 149–163 (1981)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schreyer, FO. Syzygies of canonical curves and special linear series. Math. Ann. 275, 105–137 (1986). https://doi.org/10.1007/BF01458587

Download citation

Keywords

  • Linear Series
  • Canonical Curf
  • Special Linear Series