Mathematische Annalen

, Volume 267, Issue 1, pp 1–15 | Cite as

Estimates for singular convolution operators on the Heisenberg group

  • D. Geller
  • E. M. Stein


Convolution Heisenberg Group Convolution Operator Singular Convolution Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Geller, D.: Spherical harmonics, the Weyl transform and the Fourier transform on the Heisenberg group. PreprintGoogle Scholar
  2. 2.
    Geller, D., Stein, E.M.: Singular convolution operators on the Heisenberg group. Bull. Am. Math. Soc.6, 99–103 (1982)Google Scholar
  3. 3.
    Grossman, A., Loupias, G., Stein, E.M.: An algebra of pseudo-differential operators and quantum mechanics in phase space. Ann. Inst. Fourier (Grenoble)18, 343–368 (1969)Google Scholar
  4. 4.
    Howe, R.: Quantum mechanics and partial differential equations. J. Func. Anal.38, 188–254 (1980).Google Scholar
  5. 5.
    Koranyi, A., Vagi, S.: Singular integrals on homogeneous spaces and some problems of classical analysis. Ann. Scoula Norm. Sup. Pisa25, 575–648 (1971)Google Scholar
  6. 6.
    Mauceri, G., Picardello, M.A., Ricci, F.: Twisted convolution, Hardy spaces and Hörmander multipliers. Supp. Rend. Circ. Mat. Palermo1, 191–202 (1981)Google Scholar
  7. 7.
    Müller, D.: Calderón-Zygmund kernels carried by linear subspaces of homogeneous nilpotent Lie algebras. Invent. Math.73, 467–489 (1983)Google Scholar
  8. 8.
    Nagel, A., Stein, E.M.: Lectures on pseudo-differential operators: regularity theorems and applications to non-elliptic problems. Princeton, NJ: Princeton University Press 1979Google Scholar
  9. 9.
    Phong, D.H., Stein, E.M.: Singular integrals with kernels of mixed homogeneity. Conference on Harmonic Analysis in Honor of Antoni Zygmund. Eds. Beckner, W., Calderón, A., Fefferman, R., Jones, P., Wadsworth International Group 327-339 (1982)Google Scholar
  10. 10.
    Ricci, F.: Calderón-Zygmund kernels on nilpotent Lie groups. In: Lecture Notes in Mathematics, Vol. 908, pp. 217–227. Berlin, Heidelberg, New York: Springer 1982Google Scholar
  11. 11.
    Segal, I.: Transforms for operators and symplectic automorphisms over a locally compact abelian group. Math. Scand.13, 31–43 (1963)Google Scholar
  12. 12.
    Stein, E.M., Weiss, G.: Introduction to Fourier analysis on Euclidean spaces. Princeton, NJ: Princeton University Press 1971Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • D. Geller
    • 1
    • 2
  • E. M. Stein
    • 1
    • 2
  1. 1.Department of MathematicsSUNY at Stony BrookStony BrookUSA
  2. 2.Department of MathematicsPrinceton UniversityPrincetonUSA

Personalised recommendations