Skip to main content

Degree bounds for the defining equations of arithmetically Cohen-Macaulay varieties

This is a preview of subscription content, access via your institution.

References

  1. Eisenbud, D., Goto, S.: Linear free resolutions and minimal multiplicity. J. Algebra88, 89–133 (1984)

    Google Scholar 

  2. Geramita, A.V.: The equations defining arithmetically Cohen-Macaulay varieties of dimension ≧1. The curves seminar at Queen's, Vol. III, Queen's Paper in Pure and Applied Mathematics 61, Queen's University, Kingston 1984

    Google Scholar 

  3. Griffiths, P., Harris, J.: Principles of algebraic geometry. New York: Wiley 1978

    Google Scholar 

  4. Harris, J.: A bound on the geometric genus of projective varieties. Ann. Sc. Norm. Sup. Pisa Ser. IV8, 35–68 (1981)

    Google Scholar 

  5. Harris, J.: Curves in projective space. Montreal: Les Presses de l'Université de Montreal 1982

    Google Scholar 

  6. Maroscia, P., Vogel, W.: On the defining equations of points in general position in ℙn. Math. Ann.269, 183–189 (1984)

    Google Scholar 

  7. Sally, J.: Reductions, local cohomology, and Hilbert functions of local rings. Commutative Algebra (Durham), London Math. Soc. Lect. Note Ser. 72. Cambridge: Cambridge University Press 1982

    Google Scholar 

  8. Treger, R.: On equations defining arithmetically Cohen-Macaulay schemes. I. Math. Ann.261, 141–153 (1982)

    Google Scholar 

  9. Treger, R.: On equations defining arithmetically Cohen-Macaulay schemes. II. Duke Math. J.48, 35–47 (1981)

    Google Scholar 

  10. Trung, N.V.: Reduction exponent and degree bound for the defining equations of graded rings. Proc. Am. Math. Soc. (to appear)

  11. Trung, N.V., Valla, G.: Degree bounds for the defining equations of arithmetically Cohen-Macaulay and Buchsbaum varieties. Preprint No. 15, Institute of Mathematics, Hanoi 1986

    Google Scholar 

  12. Stückrad, J., Vogel, W.: Castelnuovo bounds for certain subvarieties in ℙn. Preprint No. 11, Karl-Marx-Universität Leipzig 1986

    Google Scholar 

  13. Gruson, L., Lazarsfeld, R., Peskine, C.: On a theorem of Castelnuovo, and the equations defining space curves. Invent. Math.72, 491–506 (1983)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Trung, N.V., Valla, G. Degree bounds for the defining equations of arithmetically Cohen-Macaulay varieties. Math. Ann. 281, 209–218 (1988). https://doi.org/10.1007/BF01458428

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01458428

Keywords

  • Degree Bound