Skip to main content
Log in

A model mosaic membrane: Association of phospholipids and cytochrome oxidase

  • Published:
Journal of bioenergetics Aims and scope Submit manuscript

Abstract

The structure and physical properties of model membranes formed from lipids and cytochromec oxidase have been examined. The lipid-depleted protein is in the form of 90 Å rods or globules. When phospholipid is added the rods swell and then. form sheets and concentric membrane vesicles. The protein is saturated with lipid at 65 g/atoms of phosphorus per mole of hemea. Electron microscope examination by negative staining, sectioning, and freeze etching indicates a 50 Å thick unit membrane with 50–60 Å protein globules in the lipid bilayer. Infrared, circular dichroism and fluorescence binding studies are consistent with globular protein units surrounded with lipid. Diolein will substitute for phospholipid but the membrane formed remains as sheets rather than vesicles. Saturated phospholipids will not interact with the oxidase to form membrane. The capacity to form membrane is specific to protein associated with the hemea, and other insoluble protein in the original oxidase preparation cannot form membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. E. Green and A. Tzagoloff,J. Lipid Res.,7 (1966) 587.

    PubMed  Google Scholar 

  2. J. Lenard and S. J. Singer,Proc. Nat. Acad. Sci., U.S.,56 (1966) 1828.

    Google Scholar 

  3. D. F. H. Wallach and P. H. Zahler,Proc. Nat. Acad. Sci., U.S.,56 (1966) 1552.

    Google Scholar 

  4. D. Chapman and D. F. H. Wallach, in:Biological Membranes, D. Chapman (ed.), Academic Press, New York, 1968, p. 125.

    Google Scholar 

  5. H. Löw and I. Vallin,Biochim. Biophys. Acta,69 (1963) 361.

    Google Scholar 

  6. T. F. Chuang, F. F. Sun and F. L. Crane,J. Bioenergetics,1 (1970) 227.

    Google Scholar 

  7. F. F. Sun, K. S. Prezbindowski, F. L. Crane and E. E. Jacobs,Biochim. Biophys. Acta,153, (1968) 804.

    PubMed  Google Scholar 

  8. W. H. Vanneste,Biochim. Biophys. Acta,113 (1966) 175.

    PubMed  Google Scholar 

  9. T. Yonetani,J. Biochem. (Tokyo) 46 (1959) 917.

    Google Scholar 

  10. T. F. Chuang and F. L. Crane,Biochem. Biophys. Res. Commun.,42 (1971) 1076.

    PubMed  Google Scholar 

  11. T. Yonetani,J. Biol. Chem.,236, (1961) 1680.

    PubMed  Google Scholar 

  12. R. S. Criddle and R. M. Bock,Biochem. Biophys. Res. Commun.,1 (1959) 138.

    Google Scholar 

  13. S. Fleischer and B. Fleischer, in:Methods in Enzymology, R. W. Estabrook and M. Z. Pullman (eds), Vol. Z, Academic Press, New York, 1967, p. 407.

    Google Scholar 

  14. P. S. Chen, T. Y. Toribara and H. Warner,Anal. Chem.,28 (1956) 1756.

    Google Scholar 

  15. W. P. Cunningham and F. L. Crane,Plant Physiol.,40 (1965) 1041.

    PubMed  Google Scholar 

  16. J. H. Luft,J. Biophys. Biochem. Cytol.,9 (1961) 409.

    PubMed  Google Scholar 

  17. E. S. Reynolds,J. Cell Biol.,17 (1963) 208.

    PubMed  Google Scholar 

  18. F. L. Crane, C. J. Arntzen, J. D. Hall, F. J. Ruzicka and R. A. Dilley, in:Autonomy and Biogenesis of Mitochondria and Chloroplasts, Symposium of Australian Academy of Science, Canberra, 1969, p. 53.

  19. L. R. Fowler, S. H. Richardson and Y. Hatefi,Biochim. Biophys. Acta,96 (1962) 103.

    Google Scholar 

  20. Y. C. Awasthi, T. F. Chuang, T. W. Keenan and F. L. Crane,Biochim. Biophys. Acta,226 (1971) 42.

    PubMed  Google Scholar 

  21. T. F. Chuang, Y. C. Awasthi and F. L. Crane,Fed. Proc.,29 (1970) 540a.

    Google Scholar 

  22. G. Weber and D. J. R. Laurance,Biochem. J.,51 (1954) xxi.

    Google Scholar 

  23. W. O. McClure and G. M. Edelman,Biochemistry,5 (1965) 1908.

    Google Scholar 

  24. G. Weber and L. B. Young,J. Biol. Chem.,239 (1964) 1415.

    PubMed  Google Scholar 

  25. G. H. Dodd and G. K. Radda,Biochem. Biophys. Res. Commun.,27 (1967) 500.

    PubMed  Google Scholar 

  26. A. H. Maddy and B. R. Malcolm,Science,150 (1965) 1616.

    PubMed  Google Scholar 

  27. D. Chapman,The Structure of Lipids, Methuen, London, 1965.

    Google Scholar 

  28. A. H. Maddy and B. R. Malcolm,Science,153 (1966) 212.

    PubMed  Google Scholar 

  29. D. Chapman, V. B. Kamat and R. J. Levene,Science,160 (1968) 314.

    PubMed  Google Scholar 

  30. D. F. H. Wallach and P. H. Zahler,Proc. Nat. Acad. Sci., U.S. 56 (1966) 1552.

    Google Scholar 

  31. D. F. H. Wallach and P. H. Zahler,Biochim. Biophys. Acta,150 (1968) 186.

    PubMed  Google Scholar 

  32. D. F. H. Wallach, J. M. Graham and B. R. Fernback,Arch. Biochem. Biophys.,131 (1969) 322.

    PubMed  Google Scholar 

  33. J. M. Graham and D. F. H. Wallach,Biochem. Biophys. Acta,193 (1969) 225.

    PubMed  Google Scholar 

  34. T. Miyazawa and E. R. Blout,J. Am. Chem. Soc.,83 (1961) 712.

    Google Scholar 

  35. A. Elliott and E. J. Ambrose,Nature,165 (1950) 921.

    PubMed  Google Scholar 

  36. L. J. Bellamy,Infrared Spectra of Complex Molecules, Methuen, London, 1958, p. 27.

    Google Scholar 

  37. J. Lenard and S. J. Singer,Proc. Nat. Acad. Sci., U.S.,56 (1966) 1828.

    Google Scholar 

  38. S. Beychok,Ann. Rev. Biochem.,37 (1968) 437.

    PubMed  Google Scholar 

  39. D. W. Urry, M. Mednicks and E. Bejnarowicz,Proc. Nat. Acad. Sci., U.S.,57 (1967) 1043.

    Google Scholar 

  40. D. G. McConnell, A. Tzagoloff, D. H. Machennan and D. E. Green,J. Biol. Chem.,241 (1966) 2473.

    Google Scholar 

  41. E. A. Grula, T. F. Butler, R. D. King and G. L. Smith,Canadian J. Microbiol.,13 (1967) 1499.

    Google Scholar 

  42. S. Seki and T. Oda,Arch. Biochem. Biophys.,138 (1970) 122.

    PubMed  Google Scholar 

  43. K. Okunuki, T. Sekuzu, T. Yonetani and S. Takemore,J. Biochem. (Tokyo),45 (1958) 847.

    Google Scholar 

  44. E. G. Ball, C. G. Strittmatter and O. Cooper,J. Biol. Chem.,193 (1951) 635.

    PubMed  Google Scholar 

  45. S. Takemori, I. Sekuzu and K. Okunuki,Biochim. Biophys. Acta,51 (1961) 464.

    PubMed  Google Scholar 

  46. Y. Orrii and K. Okunuki,J. Biochem. (Tokyo),58 (1965) 561.

    Google Scholar 

  47. T. F. Chuang and F. L. Crane, in preparation.

  48. J. Lenard and S. J. Singer,Science,159 (1968) 738.

    Google Scholar 

  49. A. A. Benson, in:Membrane Models and the Formation of Biological Membranes, L. Bolis and B. A. Pethica (eds), North Holland, Amsterdam, 1968, p. 190.

    Google Scholar 

  50. D. E. Green and S. Fleischer, in:Metabolism and Physiological Significance of Lipids, R. M. C. Dawson and D. N. Rhodes (eds), John Wiley, New York, 1964, p. 581.

    Google Scholar 

  51. H. A. Scheraga, G. Nemethy and J. Z. Steinberg,J. Biol. Chem.,237 (1962) 2560.

    Google Scholar 

  52. A. D. Brown,J. Mol. Biol.,12 (1965) 491.

    PubMed  Google Scholar 

  53. T. E. Weier and A. A. Benson,Amer. J. Bot.,54 (1967) 389.

    Google Scholar 

  54. D. F. H. Wallach and A. Gordon,Fed. Proc.,27 (1968) 1263.

    PubMed  Google Scholar 

  55. D. M. Small,J. Lipid Res.,8 (1967) 551.

    PubMed  Google Scholar 

  56. E. E. Jacobs, E. C. Andrews, W. P. Cunningham and F. L. Crane,Biochem. Biophys. Res. Commun.,25 (1966) 96.

    Google Scholar 

  57. H. Moor and K. Mühlethaler,J. Cell Biol.,17 (1963) 609.

    Google Scholar 

  58. P. G. Shakespeare and H. R. Mahler,J. Biol. Chem.,246 (1971) 7649.

    PubMed  Google Scholar 

  59. G. Schatz, G. S. P. Groot, T. Mason, W. Rouslin, D. C. Wharton and J. Saltzgaher,Fed. Proc.,31 (1972) 21.

    PubMed  Google Scholar 

  60. D. W. Urry,Biochim. Biophys. Acta,265 (1972) 115.

    PubMed  Google Scholar 

  61. G. Vanderkooi,Ann. N. Y. Acad. Sci.,195 (1972) 6.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chuang, T.F., Awasthi, Y.C. & Crane, F.L. A model mosaic membrane: Association of phospholipids and cytochrome oxidase. J Bioenerg Biomembr 5, 27–72 (1973). https://doi.org/10.1007/BF01458355

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01458355

Keywords

Navigation