Skip to main content
Log in

Effects of dextran polydispersity on red blood cell aggregation

  • Colloid Science
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

B 512 F dextran fractions of different polydispersities were prepared by fractionnal precipitation and preparative elution chromatography. By combination of low angle laser light scattering (LALLS) and gel permeation chromatography (GPC), absolute average molecular weights (MWs) and molecular weight distribution functions (MWDs) were determined. Static and thermodynamical properties in terms of polymer dimensions and second virial coefficient of dilute solutions of dextran in water have been investigated. The results indicate that dextran macromolecules in water are rather compact and impenetrable coils. Measuring the disaggregation shear stress of dextran-induced red blood cell aggregates by laser light reflectometry, the macromolecular bridging energy was shown to depend upon dextran sample polydispersity. This reflects the weak and reversible character of red blood cell aggregation by dextran chains in physiological saline solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chien S, Jan KM (1973) Microvasc Res 5:155

    PubMed  Google Scholar 

  2. Jan KM (1979) Biorheology 16:137

    PubMed  Google Scholar 

  3. Brooks DE, Greig RG, Janzen J (1980) Erythrocyte mechanics and blood flow, Alan R Liss Inc, New York

    Google Scholar 

  4. Chien S, Simchon S, Abbot RE, Jan KM (1977) J Colloid Interface Sci 62:461

    Google Scholar 

  5. Mills P, Dufaux J, Quemada D (1980) Rev Phys Appl 15:1357

    Google Scholar 

  6. Snabre P, Mills P (1982) Studia Biophys 90:238

    Google Scholar 

  7. Basedow AM, Ebert KH (1979) J Polym Sci, Polym Symp 66:101

    Google Scholar 

  8. Hamielec AE, Ederer HJ, Ebert KH (1981) J liquid Chromato 4:1697

    Google Scholar 

  9. Raczek J, Meyerhoff G (1977) Europ Polym J 13:539

    Google Scholar 

  10. Lansing W, Kraemer EO (1935) J Phys Chem 57:1369

    Google Scholar 

  11. Senti FR, Hellman NN, Ludwig NH, Babcock GE (1955) J Polymer Sci 17:527

    Google Scholar 

  12. Garg SK, Stivala SS (1978) J Polym Sci, Polym Phys 16:1419

    Google Scholar 

  13. Basedow AM, Ebert KH, Feigenbutz W (1980) Makromol Chem 181:1071

    Google Scholar 

  14. Larm O, Lindberg B, Svensson S (1971) Carbohyd Res 20:39

    Google Scholar 

  15. Fahner EM, Grossmann GH, Ebert KH (1984) Makromol Chem 185:2205

    Google Scholar 

  16. Granath KA (1958) J Polym Sci 13:308

    Google Scholar 

  17. Akcasu AZ, Han CC (1979) Macromolecules 12:276

    Google Scholar 

  18. Flory PJ (1953) Principles of Polymer Chemistry, Cornell Univ Press, Ithaca

    Google Scholar 

  19. Baumler H, Snabre P, Mills P (1985) Biorheology, in press

  20. Mandelbrot BB (ed) (1983) Freeman WH, The fractal geometry of nature, New York

    Google Scholar 

  21. Snabre P, Mills P, Bitlol M, pubmitted for publication in Micror Res

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snabre, P., Grossmann, G.H. & Mills, P. Effects of dextran polydispersity on red blood cell aggregation. Colloid & Polymer Sci 263, 478–483 (1985). https://doi.org/10.1007/BF01458338

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01458338

Key words

Navigation