Advertisement

Mathematische Annalen

, Volume 277, Issue 3, pp 447–451 | Cite as

A unified Kummer-Artin-Schreier sequence

  • William C. Waterhouse
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baeza, R.: Quadratic forms over semilocal rings. Lec. Notes Math. 655. Berlin, Heidelberg, New York: Springer 1978Google Scholar
  2. 2.
    Bass, H.: AlgebraicK-theory. New York: Benjamin 1968Google Scholar
  3. 3.
    Childs, L.N., Magid, A.R.: The Picard invariant of a principal homogeneous space. J. Pure Appl. Algebra4, 273–286 (1974)Google Scholar
  4. 4.
    Childs, L.N.: The group of unramified Kummer extensions of prime degree. Proc. Lond. Math. Soc.35, 407–422 (1977)Google Scholar
  5. 5.
    Haggenmüller, R.: Diskriminanten und Picard-Invarianten freier quadratischer Erweiterungen. Manusc. Math.36, 83–103 (1981)Google Scholar
  6. 6.
    Milne, J.S.: Etale cohomology. Princeton Math. Series 33. Princeton: Princeton Univ. Press 1980Google Scholar
  7. 7.
    Small, C.: The group of quadratic extensions. J. Pure Appl. Algebra2, 83–105 (1972)Google Scholar
  8. 8.
    Waterhouse, W.C., Weisfeiler, B.: One-dimensional affine group schemes. J. Algebra66, 550–568 (1980)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • William C. Waterhouse
    • 1
  1. 1.Department of MathematicsPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations