Abbreviations
- p :
-
a prime number
- Λ(n):
-
the von Mangoldt function
- τ j (m):
-
the divisor function
- ϕ(q):
-
the Euler function
- μ(m):
-
the Möbius function
- e(ζ):
-
the additive charactere 2πiζ
- χ(n):
-
a multiplicative character
- \(\hat f\) :
-
the Fourier transform off, i.e.,
$$\hat f(\eta ) = \int\limits_{ - \infty }^\infty {f(\xi )e(\xi \eta )d\xi }$$ - m≡a(q) :
-
meansm≡a (modq)
- \(\frac{{\bar d}}{c}\) :
-
meansa/c (mod 1) wheread≡1 (modc). Sums involving this symbol are restricted, often without explicit mention, to values of the variable for which the function summed is defined
- m∼M :
-
meansM≦m<2M
- ∥α∥:
-
meansL 2 norm of α=(α m ), i.e., ∥α∥=(∑|α m |2)1/2
- x :
-
a large number
- ℒ:
-
logx
- π(x; q, a):
-
the number of primesp≦x, p≡a(modq)
- Ψ(x; q, a):
-
\(\sum\limits_{n \leqq x,n \equiv a(\bmod q)} {\Lambda (n)}\)
- \(\sum\limits_{b(q)} {^* }\) :
-
means the summation over residue classesb(modq) with (b, q)=1
- S(a, b; c):
-
means the Kloosterman sum\(\sum\limits_{m(c)} {^* } e((am + b\bar m)/c)\)
- A :
-
arbitrary large, positive constant, not necessarily the same in each occurrence
- B :
-
some positive constant, not necessarily the same in each occurrence
- ε:
-
any sufficiently small, positive constant, not necessarily the same in each occurrence
References
Bombieri, E.: On the large sieve. Mathematika12, 201–225 (1965)
Bombieri, E., Friedlander, J., Iwaniec, H.: Primes in arithmetic progressions to large moduli. Acta Math.156, 203–251 (1986)
Deshouillers, J.-M., Iwaniec, H.: Kloosterman sums and Fourier coefficients of cusp forms. Invent. Math.70, 219–288 (1982)
Dress, F., Iwaniec, H., Tenenbaum, G.: Sur une somme liée à la fonction de Möbius. J. Reine Angew. Math.340, 53–58 (1983)
Elliott, P.D.T.A., Halberstam, H.: A conjecture in prime number theory. Symp. Math.4, 59–72 (1968–69)
Fouvry, E.: Répartition des suites dans les progressions arithmétiques. Acta Arith.41, 359–382 (1982)
Fouvry, E.: Autour du théorème de Bombieri-Vinogradov. Acta Math.152, 219–244 (1984)
Fouvry, E.: Théorème de Brun-Titchmarsh; application au théorème de Fermat. Invent. Math.79, 383–407 (1985)
Fouvry, E., Iwaniec, H.: On a theorem of Bombieri-Vinogradov type. Mathematika27, 135–172 (1980)
Fouvry, E., Iwaniec, H.: Primes in arithmetic progressions. Acta Arith.42, 197–218 (1983)
Friedlander, J., Iwaniec, H.: On Bombieri's asymptotic sieve. Ann. Scuola Norm. Super., IV. Ser.5, 719–756 (1978)
Friedlander, J., Iwaniec, H.: Incomplete Kloosterman sums and a divisor problem. Ann. Math.121, 319–350 (1985)
Heath-Brown, D.R.: Prime numbers in short intervals and a generalized Vaughan identity. Can. J. Math.34, 1365–1377 (1982)
Iwaniec, H.: Rosser's sieve. Acta Arith.36, 171–202 (1980)
Iwaniec, H.: A new form of the error term in the linear sieve. Acta Arith.37, 307–320 (1980)
Mardzanisvili, K.K.: The estimation of a certain arithmetic sum (in Russian). Dokl. Akad. Nauk. SSSR22, 391–393 (1939)
Shiu, P.: A Brun-Titchmarsh theorem for multiplicative functions. J. Reine Angew. Math.313, 161–170 (1980)
Vaughan, R.C.: Mean value theorems in prime number theory. J. Lond. Math. Soc.10, 153–162 (1975)
Vinogradov, A.I.: On the density hypothesis for DirichletL-functions. Izv. Akad. Nauk. SSSR Ser. Mat.29, 903–934 (1965); correction ibid. Vinogradov, A.I.: On the density hypothesis for DirichletL-functions. Izv. Akad. Nauk. SSSR Ser. Mat.30, 719–720 (1966)
Author information
Authors and Affiliations
Additional information
Supported in part by NSERC grant A5123
Supported by NSF grant MCS-8108814 (A02)
Rights and permissions
About this article
Cite this article
Bombieri, E., Friedlander, J.B. & Iwaniec, H. Primes in arithmetic progressions to large Moduli. II. Math. Ann. 277, 361–393 (1987). https://doi.org/10.1007/BF01458321
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01458321