Skip to main content

Heegner points and derivatives ofL-series. II

This is a preview of subscription content, access via your institution.

References

  1. Abramowitz, N., Stegun, I.: Handbook of mathematical functions. New York: Dover 1965

    Google Scholar 

  2. Cohen, H.: A lifting of modular forms in one variable to Hilbert modular forms in two variables. In: Modular functions of one variable. VI. Serre, J.-P., Zagier, D. (eds.), 175–196. Lect. Notes. Math. 627. Berlin, Heidelberg, New York: Springer 1977

    Google Scholar 

  3. Deuring, M.: Die Typen der Multiplikatorenringe elliptischer Funktionenkörper: Abh. Math. Sem. Univ. Hamb.14, 197–272 (1941)

    Google Scholar 

  4. Eichler, M., Zagier, D.: The theory of Jacobi forms. Prog. Math. 55. Basel, Boston, Stuttgart: Birkhäuser 1985

    Google Scholar 

  5. Gross, B.: Heegner points onX o (N). In: Modular forms. Rankin, R.A. (ed.), 87–106. Chichester: Ellis Horwood 1984

    Google Scholar 

  6. Gross, B.: Local heights on curves. In: Arithmetic geometry. Cornell, G., Silverman, J. (eds.), 327–339. Berlin, Heidelberg, New York: Springer 1986

    Google Scholar 

  7. Gross, B.: On canonical and quasi-canonical liftings. Invent. Math.84, 321–326 (1986)

    Google Scholar 

  8. Gross, B., Zagier, D.: On singular moduli. J. Reine Angew. Math.355, 191–220 (1985)

    Google Scholar 

  9. Gross, B., Zagier, D.: Heegner points and derivatives ofL-series. Invent. Math.84, 225–320 (1986)

    Google Scholar 

  10. Hirzebruch, F., Zagier, D.: Intersection numbers of curves of Hilbert modular surfaces and modular forms of Nebentypus. Invent. Math.36, 57–113 (1976)

    Google Scholar 

  11. Katz, N., Mazur, B.: Arithmetic moduli of elliptic curves. Ann. Math. Stud.108, Princeton. Princeton University Press 1985

    Google Scholar 

  12. Kohnen, W.: Fourier coefficients of modular forms of half-integral weight. Math. Ann.271, 237–268 (1985)

    Google Scholar 

  13. Kohnen, W., Zagier, D.: Modular forms with rational periods. In: Modular forms. Rankin, R.A. (ed.), 197–249. Chichester: Ellis Horwood 1984

    Google Scholar 

  14. Shintani T.: On construction of holomorphic cusp forms of half-integral weight. J. Math. Soc. Japan33, 649–672 (1981)

    Google Scholar 

  15. Skoruppa, N., Zagier, D.: Jacobi forms and a certain space of modular forms. Preprint

  16. Sturm, J.: Projections ofC automorphic forms. Bull. Am. Math. Soc.2, 435–439 (1980)

    Google Scholar 

  17. Vignéras, M.-F.: Arithmétique des algèbres de quaternions. Lect. Notes 800. Berlin, Heidelberg, New York: Springer 1980

    Google Scholar 

  18. Waldspurger, J.-L.: Sur les coefficients de Fourier des formes modulaires de poids demi-entier. J. Math. Pures Appl60, 375–484 (1981)

    Google Scholar 

  19. Waldspurger, J.-L.: Sur les valeurs des certaines fonctionsL automorphes en leur centre de symétrie. Compos. Math.54, 173–242 (1985)

    Google Scholar 

  20. Zagier, D.: Modular forms associated to real quadratic fields. Invent. Math.30, 1–46 (1975)

    Google Scholar 

  21. Zagier, D.: Modular functions whose Fourier coefficients involve zeta-functions of quadratic fields. In: Modular functions of one variable. VI. Serre, J.P., Zagier, D. (eds.), 105–169. Lect. Notes 627. Berlin, Heidelberg, New York: Springer 1977

    Google Scholar 

  22. Zagier, D.: Eisenstein series and the Riemann zeta function. In: Automorphic forms. representation theory and arithmetic., 275–301 Berlin, Heidelberg, New York: Springer 1981

    Google Scholar 

  23. Zagier, D.: Modular points modular curves, modular surfaces, and modular forms. In: Arbeitstagung Bonn 1984. Hirzebruch, F., Schwermer, J., Suter., S. (eds.), 225–248 Lect. Notes Math. 1111. Berlin, Heidelberg, New York: Springer 1985

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Friedrich Hirzebruch

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gross, B., Kohnen, W. & Zagier, D. Heegner points and derivatives ofL-series. II. Math. Ann. 278, 497–562 (1987). https://doi.org/10.1007/BF01458081

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01458081

Keywords

  • Heegner Point