Skip to main content

Distribution of poly(β-hydroxybutyrate) and poly(ε-caprolactone)aerobic degrading microorganisms in different environments

Abstract

To assess the capacity of the natural environment for degrading plastics, the populations of poly(β-hydroxybutyrate)(PHB)-and poly(ε-caprolactone)(PCL)-degrading aerobic microorganisms and their ratios to the total number of microorganisms in soil samples were estimated by the plate count method with agar medium containing emulsified PHB or PCL. The numbers of the degrading microorganisms were determined by counting colonies that formed clear zones on the plate. It was found that PHB- and PCL-degrading (depolymerizing) microorganisms are distributed over many kinds of material, including landfill leachate, compost, sewage sludge, forest soil, farm soil, paddy soil, weed field soil, roadside sand, and pond sediment. Of total colony counts, the percentages of PHB and PCL degrading microorganisms were 0.2–11.4 and 0.8–11.0%, respectively. The results suggest that many kinds of degrading microorganisms are present in each environment and that specific consortia differing in biodegradation capacity are constructed.

This is a preview of subscription content, access via your institution.

References

  1. A. A. Chowdhury,Arch. Mikrobiol. 47 167–200 (1963).

    PubMed  Google Scholar 

  2. F. P. Delafield, M. Doudoroff, N. J. Palleroni, C. J. Lusty, and R. Contopoulos,J. Bacteriol. 90(5), 1455–1466 (1965).

    PubMed  Google Scholar 

  3. C. J. Lusty and M. Doudoroff,Proc. Natl. Acad. Sci. USA 56 960–965 (1966).

    PubMed  Google Scholar 

  4. T. Tanio, T. Fukui, Y. Shirakura, T. Saito, K. Tomita, T. Kaiho, and S. Masamune,Eur. J. Biochem. 124 71–77 (1982).

    PubMed  Google Scholar 

  5. P. H. Janssen and C. G. Harfoot,Arch. Microbiol. 154 253–259 (1990).

    Google Scholar 

  6. H. Tanaka, K. Tonomura, and A. Kamibayashi,Nippon Nougeikagaku Kaishi 50(9), 431–436 (1976).

    Google Scholar 

  7. M. Doudoroff and N. J. Palleroni, inBergey's Manual of Determinative Bacteriology, 8th ed., R. E. Buchanan and N. E. Gibbons, eds. (Williams & Wilkins, Baltimore, 1974), pp. 227–229.

    Google Scholar 

  8. Y. Tokiwa, T. Ando, and T. Suzuki,J. Ferment. Technol. 54(8), 603–608 (1976).

    Google Scholar 

  9. P. Dave, M. Parikh, M. Reeve, R. A. Gross, and S. P. McCarthy,Polym. Preprints Am. Chem. Soc. Div. Polym. Mater. 63 726 (1990).

    Google Scholar 

  10. K. Mukai, Y. Doi, and K. Yamada,Polym. Preprints Jap. 41(6), 2180–2182 (1992).

    Google Scholar 

  11. D. Jendrossek, I. Knoke, R. B. Habibian, A. Steinbuchel, and H. G. Schlegel,J. Environ. Polym. Degrad. 1(1), 53–63 (1993).

    Google Scholar 

  12. S. Ishikuri and T. Hattori,Soil Sci. Plant Nutr. 33(3), 355–362 (1987).

    Google Scholar 

  13. M. I. Timonin,Can. J. Res. C. 13, 32–46 (1935).

    Google Scholar 

  14. M. Alexander,Introduction to Soil Microbiology (John Wiley, New York, 1961), p. 28.

    Google Scholar 

  15. S. C. Vandecaveye and H. Katznelson,Soil. Sci. 46 57–74 (1938).

    Google Scholar 

  16. S. Ishizawa and K. Toyoda,Bull. Natl. Inst. Agr. Sci. Ser. B 14, 203–284 (1964).

    Google Scholar 

  17. K. Morikawa and M. Otsuka,Bull. Jap. Soc. Microbial Ecol. 6(2), 87–94 (1991).

    Google Scholar 

  18. T. Nakamura and T. Yoshikura,Bull. Jap. Soc. Microbial Ecol. 5(1), 13–20 (1989).

    Google Scholar 

  19. M. Nasu, N. Yamaguchi, K. Makino, Y. Takubo, and M. Kondo,Bull. Jap. Soc. Microbial Ecol. 7(1), 1–7 (1991).

    Google Scholar 

  20. D. F. Gilmore, R. C. Fuller, and R. Lenz, inDegradable Materials, S. A. Barenberg, J. L. Brash, R. Narayan, and A. E. Redpath (eds.) (CRC Press, Boca Raton, FL, 1990), pp. 481–514.

    Google Scholar 

  21. S. Akita, Y. Einaga, Y. Miyake, and H. Fujita,Macromolecules 9(5), 774–780 (1976).

    Google Scholar 

  22. J. Shishiyama, F. Araki, and S. Akai,Plant Cell Physiol. 11 323–334 (1970).

    Google Scholar 

  23. P. J. Holloway,Chem. Phys. Lipids 9 158–170 (1972).

    Google Scholar 

  24. P. J. Holloway,Chem. Phys. Lipids 9 171–179 (1972).

    Google Scholar 

  25. P. J. Holloway and A. H. B. Deas,Phytochemistry 12 1721–1735 (1973).

    Google Scholar 

  26. P. J. Holloway,Phytochemistry 12 2913–2920 (1973).

    Google Scholar 

  27. P. E. Kolattukudy,Science 208 990–1000 (1980).

    Google Scholar 

  28. A. Brown and P. E. Kolattukudy,J. Agr. Food Chem. 26(5), 1263–1266 (1978).

    Google Scholar 

  29. A. Brown and P. E. Kolattukudy,Arch. Biochem. Biophys. 190(1), 17–26 (1978).

    PubMed  Google Scholar 

  30. J. Shishiyama, F. Araki, and S. Akai,Plant Cell Physiol. 11 937–945 (1970).

    Google Scholar 

  31. R. E. Purdy and P. E. Kolattukudy,Arch. Biochem. Biophys. 159 61–69 (1973).

    PubMed  Google Scholar 

  32. R. E. Purdy and P. E. Kolattukudy,Biochemistry 14(13), 2824–2831 (1975).

    PubMed  Google Scholar 

  33. R. E. Purdy and P. E. Kolattukudy,Biochemistry 14(13), 2832–2840 (1975).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nishida, H., Tokiwa, Y. Distribution of poly(β-hydroxybutyrate) and poly(ε-caprolactone)aerobic degrading microorganisms in different environments. J Environ Polym Degr 1, 227–233 (1993). https://doi.org/10.1007/BF01458031

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01458031

Key words

  • Biodegradable plastic
  • poly(β-hydroxybutyrate)
  • poly(ε-caprolactone)
  • aerobic degrading microorganisms
  • distribution
  • biodegradation capacity