Mathematische Annalen

, Volume 261, Issue 1, pp 55–62 | Cite as

Indefinite Kähler manifolds

  • Manuel Barros
  • Alfonso Romero


These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barros, M.: On the almost Hermitian structures of a differentiable manifold. Ann. Mat. Pura Appl.123, 27–33 (1980)Google Scholar
  2. 2.
    Chen, B.Y., Ogiue, K.: Some characterizations of complex space forms. Duke Math. J.40, 797–799 (1973)Google Scholar
  3. 3.
    Dajczer, M., Nomizu, K.: On sectional curvature of indefinite metrics. II. Math. Ann.247, 279–282 (1980)Google Scholar
  4. 4.
    Dombrowski, P.: On the geometry of the tangent bundle. J. Reine Angew. Math.210, 73–88 (1962)Google Scholar
  5. 5.
    Graves, L., Nomizu, K.: On section curvature of indefinite metrics. Math. Ann.232, 267–272 (1978)Google Scholar
  6. 6.
    Houh, C.S.: On totally real bisectional curvature. Proc. Am. Math. Soc.56, 261–263 (1976)Google Scholar
  7. 7.
    Kobayashi, S., Nomizu, K.: Foundations of differential geometry. I, II. Interscience 1963, 1969Google Scholar
  8. 8.
    Kulkarni, R.S.: The values of sectional curvature in indefinite metrics. Comm. Math. Helv.54, 173–176 (1979)Google Scholar
  9. 9.
    Nomizu, K.: Conditions for constancy of the holomorphic sectional curvature. J. Differential Geometry8, 335–339 (1973)Google Scholar
  10. 10.
    O'Neill, B.: The fundamental equations of a submersion. Mich. Math. J.13, 459–469 (1966)Google Scholar
  11. 11.
    Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds. Tôhoku Math. J.10, 238–254 (1958)Google Scholar
  12. 12.
    Tachibana, S., Okumura, M.: On the almost complex structure of tangent bundles of Riemannian spaces. Tôhoku Math. J.14, 156–161 (1962)Google Scholar
  13. 13.
    Wolf, J.A.: Isotropic manifolds of indefinite metric. Comm. Math. Helv.39, 21–64 (1964)Google Scholar
  14. 14.
    Wolf, J.A.: Spaces of constant curvature. London, New York: MacGraw-Hill 1967Google Scholar
  15. 15.
    Yano, K., Ishihara, S.: Tangent and cotangent bundles. New York, Basel: Dekker 1973Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Manuel Barros
    • 1
  • Alfonso Romero
    • 1
  1. 1.Department of GeometryUniversity of GranadaGranadaSpain

Personalised recommendations