Skip to main content

The equivariant triangulation theorem for actions of compact Lie groups

This is a preview of subscription content, access via your institution.

References

  1. Arhangel'skiî, A.V.: Bicompact sets and the topology of spaces Trans. Moscow Math. Soc.13, 1–62 (1965)

    Google Scholar 

  2. Bredon, G.E.: Introduction to compact transformation groups. New York, London: Academic Press 1972

    Google Scholar 

  3. Cairns, S.S.: Triangulated manifolds and differentiable manifolds. In: Lectures in Topology, pp. 143–157. Ann Arbor: University of Michigan Press. 1941

    Google Scholar 

  4. Conner, P.E., Floyd, E.E.: Differentiable periodic maps. Berlin, Göttingen, Heidelberg, New York: Springer 1964

    Google Scholar 

  5. Engelking, R.: General topology. Warsaw: Polish Scientific Publishers 1977

    Google Scholar 

  6. Illman, S.: Equivariant singular homology and cohomology for actions of compact Lie groups. In: Proceedings of the Second Conference of Compact Transformation Groups (Univ. of Massachusetts, Amherst 1971), Lecture Notes in Mathematics, Vol. 298, pp. 403–415, Berlin, Heidelberg, New York: Springer 1972

    Google Scholar 

  7. Illman, S.: Equivariant algebraic topology. Ph.D. Thesis, Princeton Univ., Princeton, N.J., 1972

    Google Scholar 

  8. Illman, S.: Smooth equivariant triangulations ofG-manifolds forG a finite group Math. Ann.233, 199–220 (1978)

    Google Scholar 

  9. Kelley, J.: General topology Princeton: Van Nostrand 1955

    Google Scholar 

  10. Lellmann, W.: Orbiträume vonG-Mannigfaltigkeiten und stratifizierte Mengen. Diplomarbeit, Bonn 1975

  11. Matumoto, T.: EquivariantK-theory and Fredholm operators. J. Fac. Sci. Univ. Tokyo Sect. I A Math.18, 109–125 (1971)

    Google Scholar 

  12. Matumoto, T.: OnG-CW complexes and a theorem of J.H.C. Whitehead. J. Fac. Sci. Univ. Tokyo Sect. I A Math.18, 363–374 (1971)

    Google Scholar 

  13. Munkres, J.R.: Elementary differential topology. Rev. Edit. Ann. of Math. Studies, No. 54. Princeton: Princeton University Press 1966

    Google Scholar 

  14. Palais, R.S.: The classification ofG-spaces. Mem. Am. Math. Soc.36, 1–72 (1960)

    Google Scholar 

  15. Verona, A.: Triangulation of stratified fibre bundles. Manuscripta Math.30, 425–445 (1980)

    Google Scholar 

  16. Yang, C.T.: The triangulability of the orbit space of a differentiable transformation group. Bull. Am. Math. Soc.69, 405–408 (1963)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Illman, S. The equivariant triangulation theorem for actions of compact Lie groups. Math. Ann. 262, 487–501 (1983). https://doi.org/10.1007/BF01456063

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01456063

Keywords

  • Triangulation Theorem
  • Equivariant Triangulation