Mathematische Annalen

, Volume 265, Issue 4, pp 513–527 | Cite as

On the word problem for the modular lattice with four free generators

  • Christian Herrmann
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Artman, B.: On coordinates in modular lattices. Illinois J. Math.12, 626–648 (1968)Google Scholar
  2. 2.
    Birkhoff, G.: On the combination of subalgebras. Proc. Cambridge Phil. Soc29, 441–464 (1933)Google Scholar
  3. 3.
    Birkhoff, G.: Lattice theory. Providence: Am. Math. Soc. Colloquium Publ. 1940Google Scholar
  4. 4.
    Dedekind, R.: Über die von drei Moduln erzeugte Dualgruppe. Math. Ann.53, 236–271 (1900)Google Scholar
  5. 5.
    Freese, R.: The variety of modular lattices is not generated by its finite members. Trans. Am. Math. Soc.255, 277–300 (1979)Google Scholar
  6. 6.
    Freese, R.: Projective geometries as projective modular lattices. Trans. Am. Math. Soc.251, 329–342 (1979)Google Scholar
  7. 7.
    Freese, R.: Free modular lattices. Trans. Am. Math. Soc.261, 81–91 (1980)Google Scholar
  8. 8.
    Freese, R.: Some order theoretic questions about free lattices and free modular lattices. In: Ordered sets, pp. 355–377. Rival, I. (ed.). Dordrecht: Reidel 1982Google Scholar
  9. 9.
    Gel'fand, I.M., Ponomarev, V.A.: Free modular lattices and their representations (in Russian). Usp. Math. Nauk.29, 3–58 (1974)Google Scholar
  10. 10.
    Hall, M., Dilworth, R.P.: The embedding problem for modular lattices. Ann. Math.45, 450–456 (1944)Google Scholar
  11. 11.
    Herrmann, C.:S-verklebte Summen von Verbänden. Math. Z.130, 255–274 (1973)Google Scholar
  12. 12.
    Herrmann, C.: On elementary Arguesian lattices with four generators. Algebra Universalis (to appear)Google Scholar
  13. 13.
    Huhn, A.: Schwach distributive Verbände. I. Acta Sci. Math.33, 297–305 (1972)Google Scholar
  14. 14.
    Hutchinson, G.: Recursively unsolvable word problems for modular lattices and diagram-chasing. J. Algebra26, 385–399 (1973)Google Scholar
  15. 15.
    Hutchinson, G.: Embedding and unsolvability theorems for modular lattices. Algebra Universalis7, 47–84 (1977)Google Scholar
  16. 16.
    Lyndon, R.C., Schupp, P.E.: Combinatorial group theory. Berlin, Heidelberg, New York: Springer 1977Google Scholar
  17. 17.
    Lipshitz, L.: The undecidability of the word problem for projective geometries and modular lattices. Trans. Am. Math. Soc.193, 171–180 (1974)Google Scholar
  18. 18.
    v. Neumann, J.: Continuous geometry. Princeton, NJ: Princeton University Press 1960Google Scholar
  19. 19.
    Nazarova, L.A.: Partially ordered sets with an infinite number of indecomposable representations. In: Representations of algebras. Ottawa 1974. Dlab, V., Gabriel, P. (eds.). Lecture Notes in Mathematics, Vol. 488. Berlin, Heidelberg, New York: Springer 1975Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Christian Herrmann
    • 1
  1. 1.FB MathematikTechnische Hochschule DarmstadtDarmstadtFederal Republic of Germany

Personalised recommendations