References
[A] Aubin, T.: Équations du type Monge-Ampère sur les variétés kählériennes compactes. C. R. Acad. Paris283, 119–121 (1976)
[B] Brieskorn, E.: Rationale Singularitäten komplexer Flächen. Invent. Math.4, 336–358 (1968)
[C, Y] Cheng, S.Y., Yau, S.T.: On the existence of a complete Kähler metric on noncompact complex manifolds and the regularity of Fefferman's equation. Comm. Pure Appl. Math.26, 507–544 (1978)
[H1] Hirzebruch, F.: Hilbert modular surfaces. Ens. Math.71, 183–281 (1973)
[H2] Hirzebruch, F.: Chern numbers of algebraic surfaces — an example Preprint series 030-83, M.S.R.I., Berkeley
[Hö] Höfer, T.: Dissertation, Bonn 1984
[K1] Kobayashi, R.: A remark on the Ricci curvature of algebraic surfaces of general type. Tohoku Math. J.36, 385–399 (1984)
[K2] Kobayashi, R.: Einstein-Kähler metrics on open algebraic surfaces of general type. Tohoku Math. J. (to appear)
[M] Miyaoka, Y.: The maximal number of quotient singularities on surfaces with given numerical invariants. Math. Ann.268, 159–171 (1984)
[P] Parsad, G.: Strong rigidity of ℚ-rank 1 lattices. Invent. Math.21, 255–286 (1973)
[S] Sakai, F.: Semi-stable curves on algebraicc surfaces and logarithmic pluricanonical maps. Math. Ann.254, 89–120 (1980)
[Y1] Yau, S.T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equations. I. Comm. Pure Appl. Math.31, 339–411 (1978)
[Y2] Yau, S.T.: Calabi's conjecture and some new results in algebraic geometry. Proc. Natl. Acad. Sci. USA74, 1789–1799 (1977)
[Z] Zariski, O.: The theorem of Riemann-Roch for high multiple of an effective divisor on surfaces. Ann. Math.76, 506–615 (1962)
Author information
Authors and Affiliations
Additional information
Dedicated to the memory of the late Professor Takehiko Miyata
Rights and permissions
About this article
Cite this article
Kobayashi, R. Einstein-KählerV-metrics on open SatakeV-surfaces with isolated quotient singularities. Math. Ann. 272, 385–398 (1985). https://doi.org/10.1007/BF01455566
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01455566