Skip to main content
Log in

Quantum and classical spin clusters: disappearance of quantum numbers and Hamiltonian chaos

  • Orginal Contributions
  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

We present a direct link between manifestations of classical Hamiltonian chaos and quantum nonintegrability effects as they occur in quantum invariants. In integrable classical Hamiltonian systems, analytic invariants (integrals of the motion) can be constructed numerically by means of time averages of dynamical variables over phase-space trajectories, whereas in near-integrable models such time averages yield nonanalytic invariants with qualitatively different properties. Translated into quantum mechanics, the invariants obtained from time averages of dynamical variables in energy eigenstates provide a topographical map of the plane of quantized actions (quantum numbers) with properties which again depend sensitively on whether or not the classical integrability condition is satisfied. The most conspicuous indicator of quantum chaos is the disappearance of quantum numbers, a phenomenon directly related to the breakdown of invariant tori in the classical phase flow. All results are for a system consisting of two exchange-coupled spins with biaxial exchange and single-site anisotropy, a system with a nontrivial integrability condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lichtenberg, A.J., Lieberman, M.A.: Regular and stochastic motion. Berlin, Heidelberg, New York: Springer 1983

    Google Scholar 

  2. Tabor, M.: Chaos and integrability in nonliner dynamics. New York: Wiley 1989

    Google Scholar 

  3. Sagdeev, R.Z., Usikov, D.A., Zaslavsky, G.M.: Nonlinear physics. From the pendulum to turbulence and chaos. Chur: Harwood 1988

    Google Scholar 

  4. Ozorio de Almeida, A.M.: Hamiltonian systems. Chaos and quantization. Cambridge: Cambridge University Press 1988

    Google Scholar 

  5. Wolfram, S.: Phys. Rev. Lett.55, 449 (1985)

    Google Scholar 

  6. Ford, J.: Phys. Today33, No. 4, 40 (1983)

    Google Scholar 

  7. Chaitin, G.J.: Algorithmic information theory. Cambridge: Cambridge University Press 1987

    Google Scholar 

  8. Chaotic behavior in quantum systems. Theory and applications. Casati, G. (ed.). New York: Plenum Press 1985

    Google Scholar 

  9. Quantum measurement and chaos. Pike, E.R., Sarkar, S. (eds.) New York: Plenum Press 1987

    Google Scholar 

  10. Eckhardt, B.: Phys. Rep163, 205 (1988)

    Google Scholar 

  11. Bohigas, O., Giannoni, M.J., Schmit, C.: Phys. Rev. Lett.52, 1 (1984)

    Google Scholar 

  12. José, J.V.: In: Directions in chaos. Bai-Lin, H. (ed.), Vol. II. Singapore: World Scientific 1989

    Google Scholar 

  13. Van Leeuwen, K.A.H., et al.: Phys. Rev. Lett.55, 2231 (1985)

    Google Scholar 

  14. Bardsley, J.N., et al.: Phys. Rev. Lett.56, 1007 (1986)

    Google Scholar 

  15. Holle, A., et al.: Phys. Rev. Lett.56, 2594 (1986)

    Google Scholar 

  16. Hoffnagle, J., De Voe, R.G., Reyna, L., Brewer, R.G.: Phys. Rev. Lett.61, 255 (1988)

    Google Scholar 

  17. Magyari, E., Thomas, H., Weber, R., Kaufman, C., Müller, G.: Z. Phys. B-Condensed Matter65, 363 (1987)

    Google Scholar 

  18. Srivastava, N., Kaufman, C., Müller, G., Weber, R., Thomas, H.: Z. Phys. B-Condensed Matter70, 251 (1988)

    Google Scholar 

  19. Srivastava, N., Kaufman, C., Müller, G.: J. Appl. Phys.63, 4154 (1988)

    Google Scholar 

  20. Srivastava, N., Kaufman, C., Müller, G.: J. Phys. (Paris) C8, 1601 (1988)

    Google Scholar 

  21. Khinchin, A.I.: Mathematical foundations of statistical mechanics. p. 19. New York: Dover 1949; Abraham, R., Marsden, J.E.: Foundation of mechanics, 2nd Edn., p. 238. Reading: Benjamin Cummings 1985

    Google Scholar 

  22. See Fig. 6 of Ref. 18 for an illustration

    Google Scholar 

  23. This representations of nonanalytic invariants was amply illustrated in Figs. 7 and 8 of Ref. 18,

    Google Scholar 

  24. Peres, A.: Phys. Rev. Lett.53, 1711 (1984)

    Google Scholar 

  25. For the realization (5.15) of the line integral (5.9b), the appropriate choice of linear transformation which accomplishes this forJ z =0 is the following for symmetry classes A1S, A1A, B2S, B2A:J 1=J 1 +J 2 −s,J 2=J 2 −s ifJ 2 >0;J 1=J 2 +s,J 2=J 2 J 1 +s ifJ 2 <0. For symmetry classes B1S, B1A, B3S, B3A interchangeJ 1 andJ 2 in the above expression

  26. Weber, R.: Untersuchungen an klassischen Spinsystemen. Doctoral Thesis, University of Basel 1988, gives an exhaustive discussion of the symmetry properties and eigenvalue degeneracics of the 2-spin model (2.6)

  27. For simplicity we shall continue to refer to any single pattern in the (E<M 2z >)plane as one web even though in some cases it may only appear that way as a result of projection

  28. Chirikov, B.V.: Phys. Rep.52, 263 (1979)

    Google Scholar 

  29. Berman, G.P., Zaslavskii, G.M.: Phys. Lett.61A, 295 (1977)

    Google Scholar 

  30. Berman, G.P., Zaslavskii, G.M., Kolovsky, A.R.:ibid.87A, 152 (1982); Berman, G.P., Kolovsky, A.R.: ibid. Phys. Lett.95A, 15 (1983)

    Google Scholar 

  31. Lin, W.A., Reichl, L.E.: Phys. Rev. A36, 5099 (1987) ibid, Lin, W.A., Reichl, L.E.: Phys. Rev. AA37 3972 (1988)

    Google Scholar 

  32. Srivastava, N., Kaufman, C., Müller, G.: J. Appl. Phys.67, 5627 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, N., Müller, G. Quantum and classical spin clusters: disappearance of quantum numbers and Hamiltonian chaos. Z. Physik B - Condensed Matter 81, 137–148 (1990). https://doi.org/10.1007/BF01454225

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01454225

Keywords

Navigation