Mathematische Annalen

, Volume 258, Issue 4, pp 441–446 | Cite as

Regularity of the Bergman projection on domains with transverse symmetries

  • David E. Barrett


Transverse Symmetry Bergman Projection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bell, S., Ligocka, E.: A simplification and extension of Fefferman's theorem on biholomorphic mappings. Invent. Math.57, 283–289 (1980)CrossRefGoogle Scholar
  2. 2.
    Bell, S.: Biholomorphic mappings and the\(\bar \partial\)-problem. Ann. Math.114, 103–113 (1981)Google Scholar
  3. 3.
    Bell, S.: Proper holomorphic mappings and the Bergman projection. Duke Math. J.48, 167–175 (1981)Google Scholar
  4. 4.
    Folland, G., Kohn, J.: The Neumann problem for the Cauchy-Riemann complex. Ann. of Math. Studies. No. 75. Princeton: Princeton University Press 1972Google Scholar
  5. 5.
    Kohn, J.: Subellipticity of the\(\bar \partial\)-Neumann problem on pseudoconvex domains: sufficient conditions. Acta Math.142, 79–122 (1979)Google Scholar
  6. 6.
    Bell, S., Boas, H.: Regularity of the Bergman projection in weakly pseudoconvex domains. Math. Ann.257, 23–30 (1981)Google Scholar
  7. 7.
    Phong, D.H., Stein, E.S.: Estimates for the Bergman and Szego projections on strongly pseudoconvex domains. Duke Math J.44, 695–704 (1977)Google Scholar
  8. 8.
    Narasimhan, R.: Several complex variables. Chicago: University of Chicago Press 1971Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • David E. Barrett
    • 1
  1. 1.Department of MathematicsUniversity of ChicagoChicagoUSA

Personalised recommendations