Skip to main content
Log in

Colored noise driven systems with inertia

  • Original Contributions
  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

We present a novel approximation scheme, termed unified colored noise approximation (UCNA), for colored Gaussian noise driven nonlinear systems with inertia. This approximation allows one to evaluate static (stationary distributions, moments) as well as dynamical quantities (correlation functions) for small-to-moderate-to-large values of the correlation time. The approximation replaces a three-dimensional Markovian process by a reduced, two-dimensional Markovian dynamics with new drift and diffusion coefficients. For a harmonic potential the stationary moments are reproduced exactly. Most importantly, we present a criterion involving the noise strengthD, the friction strength γ and the noise color τ, which describes the region of validity of UCNA in the parameter space given by (D, τ, γ). At small τ-values we contrast the UCNA with the well-known small τ approximation. In order to have a comparison onanalytical grounds, we test the static and dynamical predictions of UCNA versus the well-known analytical results obtained from a three-dimensional Ornstein-Uhlenbeck process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nordholm, K.S.J., Zwanzig, R.: J. Stat. Phys.13, 347 (1975)

    Google Scholar 

  2. Garcia-Colin, L.S., Rio, J.L. del: J. Stat. Phys.16, 235 (1977);

    Google Scholar 

  3. Grabert, H., Talkner, P., Hänggi, P.: Z. Phys. B—Condensed Matter and Quanta26, 389 (1977);

    Google Scholar 

  4. Grabert, H., Talkner, P., Hänggi, P., Thomas, W.: Z. Phys. B—Condensed Matter and Quanta29, 273 (1978);

    Google Scholar 

  5. Grabert, H., Hänggi, P., Talkner, P.: J. Stat. Phys.22, 537 (1980)

    Google Scholar 

  6. Haken, H.: Synergetics. In: Springer Series in Synergetics, Vol. 1. Berlin, Heidelberg, New York: Springer 1983

    Google Scholar 

  7. Short, R., Mandel, L., Roy, R.: Phys. Rev. Lett.49, 647 (1982);

    Google Scholar 

  8. Dixit, S.N., Sahni, P.S.: Phys. Rev. Lett.50, 1273 (1983);

    Google Scholar 

  9. Schenzle, A., Graham, R.: Phys. Lett.98A, 319 (1983);

    Google Scholar 

  10. Lett, P., Short, R., Mandel, L.: Phys. Rev. Lett.52, 341 (1984);

    Google Scholar 

  11. Fox, R.F., James, G.E., Roy, R.: Phys. Rev.A30, 2482 (1984);

    Google Scholar 

  12. Jung, P., Risken, H.: Phys. Lett.103A (1984);

  13. Lett, P., Mandel, L.: J. Opt. Soc.B2, 1615 (1985);

    Google Scholar 

  14. Hernandez-Machado, A., San Miguel, M., Kalz, S.: Phys. Rev.A31 (1985);

  15. Zhu, S., Yu, A.W., Roy, R.: Phys. Rev.A34, 4333 (1986);

    Google Scholar 

  16. Fox, R.F., Roy, R.: Phys. Rev.A35, 1838 (1987);

    Google Scholar 

  17. Lett, P., Gage, E.C., Chyba, T.H.: Phys. Rev.A35, 746 (1987);

    Google Scholar 

  18. Yu, A.W., Agrawal, G.P., Roy, R.: Opt. Lett.12 (1987);

  19. Jung, P., Hänggi, P.: J. Opt. Soc. Am.B5, 979 (1988)

    Google Scholar 

  20. Vogel, K., Risken, H., Schleich, W., James, M., Moss, F., McClintock, P.V.E.: Phys. Rev.A35, 463 (1986);

    Google Scholar 

  21. Vogel, K., Leiber, Th., Risken, H., Hänggi, P., Schleich, W.: Phys. Rev.A35, 4882 (1987)

    Google Scholar 

  22. Schenzle, A., Brand, H.: Opt. Common27, 485 (1978)

    Google Scholar 

  23. Stratonovich, R.L.: Topics in the theory of random noise. Vol. I, p. 98. New York: Gordon & Breach 1963;

    Google Scholar 

  24. Lax, M.: Rev. Mod. Phys.38, 541 (1966);

    Google Scholar 

  25. Van Kampen, N.G.: Phys. Rep.24C, 171 (1976);

    Google Scholar 

  26. Sancho, J.M., San Miguel, M., Katz, S.L., Gunton, J.D.: Phys. Rev.A26, 1589 (1982);

    Google Scholar 

  27. Fox, R.F.: Phys. Lett.94A, 281 (1983);

    Google Scholar 

  28. Lindenberg, K., West, B.J.: PhysicaA128, 25 (1984);

    Google Scholar 

  29. Malchow, H., Schimansky-Geier, L.: Noise and diffusion in bistable nonequilibrium systems. In: Teubner Texte. Vol. 5, pp. 83–87, Berlin: Teubner 1985;

    Google Scholar 

  30. Leiber, Th., Risken, H.: Phys. Rev.A38, 3789 (1988) Improved small correlation time expansions:

    Google Scholar 

  31. Fox, R.F.: Phys. Rev.A33, 467 (1986);

    Google Scholar 

  32. Fox, R.F.: Phys. Rev.A37, 911 (1988)

    Google Scholar 

  33. Luciani, J.F., Verga, A.D.: Europhys. Lett.4, 255 (1987); J. Stat. Phys.50, 567 (1988);

    Google Scholar 

  34. Tsironis, T.S., Grigolini, P.: Phys. Rev. Lett.61, 7 (1988);

    Google Scholar 

  35. Hänggi, P., Jung, P., Marchesoni, F.: J. Stat. Phys.54, 1367 (1989)

    Google Scholar 

  36. Hänggi, P., Mroczkowski, T.J., Moss, F., McClintock, P.V.E.: Phys. Rev.A32, 695 (1985);

    Google Scholar 

  37. For a more recent review see Hänggi, P.: In: Noise in nonlinear dynamical systems. Moss, F., McClintock, P.V.E. (eds.), Vol. I, Chap. 9, p. 307–328. Cambridge: Cambridge University Press 1989

    Google Scholar 

  38. Jung, P., Hänggi, P.: Phys. Rev.A35, 4464 (1987)

    Google Scholar 

  39. Jung, P., Risken, H.: Z. Phys. B — Condensed Matter61, 367 (1985);

    Google Scholar 

  40. Leiber, Th., Marchesoni, F., Risken, H.: Phys. Rev. Lett.59, 1381 (1987);

    Google Scholar 

  41. Jung, P., Hänggi, P.: Phys. Rev. Lett.61, 11 (1988);

    Google Scholar 

  42. Leiber, Th., Marchesoni, F., Risken, H. Phys. Rev.A38, 983 (1988)

    Google Scholar 

  43. Risken, H., Vollmer, H.D.: Z. Phys. B — Condensed Matter and Quanta33, 297 (1979);

    Google Scholar 

  44. Vollmer, H.D., Risken, H.: Z. Phys. B — Condensed Matter and Quanta34, 313 (1979);

    Google Scholar 

  45. Risken, H.: The Fokker-Planck equation. In: Springer Series in Synergetics. Vol. 18. Berlin, Heidelberg, New York: Springer 1984

    Google Scholar 

  46. Gwinn, E.G., Westervelt, R.M.: Phys. Rev. Lett54, 1613 (1985)

    Google Scholar 

  47. Teitsworth, S.W., Westervelt, R.M.:ibid56, 516 (1986)

    Google Scholar 

  48. Moss, F., Hänggi, P., Manella, R., McClintock, P.V.E.: Phys. Rev.A33, 4459 (1986)

    Google Scholar 

  49. Schimansky-Geier, L.: Phys. Lett.A126, 455 (1988)A129, 481 (1988) (Erratum)

    Google Scholar 

  50. Ebeling, W., Schimansky-Geier, L.: In: Noise in nonlinear dynamical systems. Moss, F., McClintock, P.V.E. (eds.) Vol. I, Chap. 8, p. 279. Cambridge: University Press 1989

    Google Scholar 

  51. Fronzoni, L., Grigolini, P., Hänggi, P., Moss, F., Manella, R., McClintock, P.V.E.: Phys. Rev.A33, 3320 (1986)

    Google Scholar 

  52. Marchesoni, F., Menichella-Suetta, E., Pochini, M., Santucci, S.: Phys. Rev.A37, 3059 (1988)

    Google Scholar 

  53. Moss, F., Marchesoni, F.: Phys. Lett.A131, 322 (1988)

    Google Scholar 

  54. Grabert, H., Hänggi, P., Talkner, P.: Z. Phys. B — Condensed Matter and Quanta26, 389 (1977); J. Stat. Phys.22, 537 (1980)

    Google Scholar 

  55. Marchesoni, F.: Phys. Lett.A101, 11 (1984)

    Google Scholar 

  56. Uhlenbeck, G.E., Ornstein, L.S.: Phys. Rev.36, 823 (1930);

    Google Scholar 

  57. Wang, M.C., Uhlenbeck, G.E.: Rev. Mod. Phys.17, 323 (1945)

    Google Scholar 

  58. Hänggi, P., Marchesoni, F., Grigolini, P.: Z. Phys. B — Condensed Matter56, 333 (1984)

    Google Scholar 

  59. In all plots throughout this paper we scaled the state variablesx, v, ε and the parameters γ, τ dimensionless\((\bar x,\bar \upsilon ,\bar \varepsilon ,\bar \gamma ,\bar \tau )\)ω0 and,D to be unity\((\bar \omega _0 = 1, \bar D = 1)\). The scale transforms read\(\bar x = (\omega _0^3 /D)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} x, \bar \varepsilon = (D/\omega _0 )^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} \varepsilon , \bar t = \omega _0 t, \bar \gamma = \gamma /\omega _0 , \bar \tau = \omega _0 \tau \)

  60. Becker, R.: Theorie der Wärme. Sect. 82, Berlin, Heidelberg, New York: Springer 1985;

    Google Scholar 

  61. Chandrasekhar, S.: Rev. Mod. Phys.15, 1 (1943);

    Google Scholar 

  62. Kramers, H.A.: Physica7, 284 (1940)

    Google Scholar 

  63. Jung, P., Risken, H.: In: Optical instabilities. In: Chambridge Studies in Modern Optics. Boyd, R.W., Raymer, M.G., Narducci, L.M. (eds.) Vol. 4, p. 361 ff. Cambridge: Cambridge University 1986

    Google Scholar 

  64. Lang, S.: Algebra, pp. 110ff. Reading: Addison Wesley Publ. Comp. 1971

    Google Scholar 

  65. Wilkinson, J.H.: The algebraic eigenvalue problem. Oxford: Clarendon Press 1965

    Google Scholar 

  66. Hänggi, P., Thomas, H.: Phys. Rep.88C, 207 (1982), see p. 272;

    Google Scholar 

  67. Gardiner, C.W.: Handbook of stochastic methods. In: Springer Series in Synergetics, Vol. 13. Berlin, Heidelberg, New York: Springer 1985

    Google Scholar 

  68. Ramirez-Piscina, L., Sancho, J.M.: Phys. Rev.A37, 4469 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

H'walisz, L., Jung, P., Hänggi, P. et al. Colored noise driven systems with inertia. Z. Physik B - Condensed Matter 77, 471–483 (1989). https://doi.org/10.1007/BF01453798

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01453798

Keywords

Navigation