Skip to main content
Log in

Effective elastic moduli of two-phase transversely isotropic composites with aligned clustered fibers

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

In this paper, we address the issue of the effective elastic moduli of transversely isotropic composites reinforced with aligned clustered continuous fibers. “Clustering” implies that there are portions of the matrix with a dense reinforcement of fibers and other portions with a sparse reinforcement. The clustering effect is characterized by a probability density distribution in “local” fiber volume fractions, obtained from the Dirichlet tessellation of a microstructure. Using a combination of Christensen and Lo's solution of a 3-phase boundary value problem and Hill's self-consistent method, the effective moduli are derived in terms of the probability density distribution function. It is shown that a unimodal distribution (representative of a random microstructure) has a modest effect on the effective moduli whereas a bimodal distribution (representative of a clustered microstructure) has a significant effect over a wide range of inclusion/matrix properties. A parametric study demonstrates that clustering has a significant effect on the shear moduli and the plane strain bulk modulus of the transversely isotropic composite and has a negligible effect on the longitudinal Young's modulus and the major Poisson's ratio. The theory has been compared with the Hashin-Rosen [1] bounds (appropriately modified for the clustered microstructure) and the classical Hashin-Shtrikman [2] bounds, and the theoretical predictions have been found to be bracketed by both bounds. In addition, the plane strain bulk modulus of a sample clustered periodic microstructure is computed by the developed theory and also by the finite element analysis, and the modulus computed by both approaches demonstrates a sensitivity to clustering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hashin, Z., Rosen, B. W.: The elastic moduli of fiber-reinforced materials. J. Appl. Mech.31, 223–232 (1964).

    Google Scholar 

  2. Hashin, Z., Shtrikman, S.: A variational approach to the theory of the elastic behavior of multiphase materials. J. Mech. Phys. Solids11, 127–140 (1963).

    Google Scholar 

  3. Hershey, A. V.: The elasticity of an isotropic aggregate of anisotropic cubic crystals. ASME Appl. Mech.21, 236–241 (1954).

    Google Scholar 

  4. Kröner, E.: Zur plastischen Verformung des Vielkristalls. Acta Metall.9, 155–161 (1961).

    Google Scholar 

  5. Budiansky, B.: On the elastic moduli of some heterogeneous materials. J. Mech. Phys. Solids13, 223–227 (1965).

    Google Scholar 

  6. Hill, R.: Continuum micromechanics of elastoplastic polycrystals. J. Mech. Phys. Solids13, 89–101 (1965).

    Google Scholar 

  7. Christensen, R. M., Lo, K. H.: Solutions for the effective shear properties in three phase sphere and cylinder models. J. Mech. Phys. Solids27, 315–330 (1979).

    Google Scholar 

  8. Roscoe, R.: The viscosity of suspensions of rigid spheres. British J. Appl. Phys.3, 267–269 (1952).

    Google Scholar 

  9. Boucher, S.: On the effective moduli of isotropic two-phase composites. J. Comp. Mater.8, 82–99 (1974).

    Google Scholar 

  10. Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall.231, 571–574 (1973).

    Google Scholar 

  11. Taya, M., Mura, T.: On stiffness and strength of an aligned short-fiber reinforced composite containing fiber-end cracks under uniaxial tension. ASME J. Appl. Mech.48, 361–367 (1981).

    Google Scholar 

  12. Tandon, G. P., Weng, G. J.: The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites. Polymer Comp.5, 327–333 (1984).

    Google Scholar 

  13. Hashin, Z., Shtrikman, S.: On some variational principles in anisotropic and nonhomogeneous elasticity. J. Mech. Phys. Solids10, 335–342 (1962).

    Google Scholar 

  14. Hashin, Z., Shtrikman, S.: A variational approach to the theory of the elastic behavior of polycrystals. J. Mech. Phys. Solids10, 343–352 (1962).

    Google Scholar 

  15. Weng, G. J.: Explicit evaluation of Willis' bounds with ellipsoidal inclusions. Int. J. Eng. Sci.30, 83–92 (1992).

    Google Scholar 

  16. McCoy, J. J.: On the displacement field in an elastic medium with random variations of material properties. Recent Adv. Eng. Sci.5, New York: Gordon and Breach 1970.

    Google Scholar 

  17. Silnutzer, N.: Effective constants of statistically homogeneous materials. Ph.D. Thesis, University of Pennsylvania, 1972.

  18. Milton, G. W., Phan-Thein, N.: New bounds on effective elastic moduli of two-component materials. Proc. R. Soc. LondonA380, 305–331 (1982).

    Google Scholar 

  19. Torquato, S., Lado, F.: Effective properties of two-phase disordered composite media. II. Evaluation of bounds on the conductivity and bulk modulus of dispersions of impenetrable spheres. Phys. Rev.B 33, 6428–6434 (1986).

    Google Scholar 

  20. Sen, A. K., Lado, F., Torquato, S.: Bulk properties of composite media. II. Evaluation of bounds on the shear moduli of suspensions of impenetrable spheres. J. Appl. Phys.62, 4135–4141 (1987).

    Google Scholar 

  21. Torquato, S.: Random heterogeneous media: microstructure and improved bounds on effective properties. Appl. Mech. Rev.44, 37–76 (1991).

    Google Scholar 

  22. Benssousan, A., Lions, J. L., Papanicolau, G.: Asymptotic analysis for periodic structures. Amsterdam North Holland 1978.

    Google Scholar 

  23. Sanchez-Palencia, E.: Nonhomogeneous media and vibration theory. Lecture Notes in Physics, No. 127, Berlin: Springer 1980.

    Google Scholar 

  24. Nemat-Nasser, S., Iwakuma, T., Hejazi, M.: On composites with periodic structure. Mech. Mater.1, 239–267 (1982).

    Google Scholar 

  25. Dvorak, G. J., Teply, J. L.: Plasticity today: modeling, methods and applications (Sawczuk, A., ed). London: Elsevier 1985.

    Google Scholar 

  26. Achenbach, J. D., Zhu, H.: Effect of interphases on micro and macromechanical behavior of hexagonal-array fiber composites. ASME J. Appl. Mech.12, 85–94 (1990).

    Google Scholar 

  27. Tvergaard, V.: Analysis of tensile properties for a whisker-reinforced metal matrix composite. Acta Metall. Mater.38, 185–194 (1990).

    Google Scholar 

  28. Lagoudas, D. C., Gavazzi, A. C., Nigam, H.: Elastoplastic behavior of metal matrix composites based on incremental plasticity and the Mori-Tanaka averaging scheme. Comp. Mech.8, 193–203 (1991).

    Google Scholar 

  29. Bao, G., Hutchinson, J. W., Meeking, R. M.: The flow stress of dual-phase, nonhardening solids. Mech. Mater.12, 85–94 (1991).

    Google Scholar 

  30. Lagoudas, D. C., Boyd, J. G., Bo, Z.: Micromechanics of active composites with SMA fibers. ASME J. Eng. Mater. Technol.116, 337–347 (1994).

    Google Scholar 

  31. Christman, T., Needleman, A., Suresh, S.: An experimental and numerical study of deformation in metal-ceramic composites. Acta Metall. Mater.37, 3029–3050 (1989).

    Google Scholar 

  32. Brockenborough, J. R., Hunt, Jr., W. H., Richmond, O.: A reinforced material model using actual microstructural geometry. Scripta Metall27, 385–390 (1992).

    Google Scholar 

  33. Ghosh, S., Moorthy, S.: Elastic-plastic analysis of heterogeneous microstructures using the Voronoi cell finite element method. Comp. Meth. Appl. Mech. Eng.121, 373–409 (1995).

    Google Scholar 

  34. Ghosh, S., Nowak, Z., Lee, K.: Quantitative characterization and modeling of composite microstructures by Voronoi cells. Acta Metall. Mater.45, 2215–2234 (1997).

    Google Scholar 

  35. Ghosh, S., Mukhopadhyay, S. N.: A two-dimensional automatic mesh generator for finite element analysis for random composites. Comp. Structures41, 245–256 (1991).

    Google Scholar 

  36. Scheaffer, R. L., Mendenhall, W.: Introduction to probability: theory and applications. North Scituate, MA: Duxbery Press 1975.

    Google Scholar 

  37. Wray, P. J., Richmond, O., Morrison, H. L.: Use of the Dirichlet tessellation for characterizing and modeling nonregular dispersions of second-phase particles. Metallography16, 39–58 (1983).

    Google Scholar 

  38. Walpole, L. J.: Elastic behavior of composite materials: theoretical foundations. Adv. Appl. Mech.21, 169–242 (1981).

    Google Scholar 

  39. Wang, B.: Three-dimensional analysis of an ellipsoidal inclusion in a piezoelectric material. Int. J. Solids & struct.29, 293–308 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharyya, A., Lagoudas, D.C. Effective elastic moduli of two-phase transversely isotropic composites with aligned clustered fibers. Acta Mechanica 145, 65–93 (2000). https://doi.org/10.1007/BF01453645

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01453645

Keywords

Navigation