Skip to main content
Log in

Modelling of a turbulent reacting gas/particle flow

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

A mathematical model for two-phase turbulent reactive flows is presented which is based on considering both phases in Lagrangian manner. The mechanical and thermodynamical properties of the two-phase mixture are calculated along the trajectories of “particles” representing the system. Similar to Monte-Carlo methods for solving a high dimensional joint velocity-composition probability density function, the turbulent gas phase is described by means of stochastic calculus. The deterministic equations for individual solid particles can be treated directly. In this approach, the interaction between both phases is not smeared over computational cells but restricted to the vicinity of solid particles by the definition of an “action-sphere” which is attached to every solid particle. Applications of the method to isotropic, homogeneous turbulence indicate that it is capable of providing information on the local structure of combustion zones with species formation and transport. The results show that the method is applicable independent of the combustion modes in the gas phase, and it provides extensive statistics of various correlations of properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berlemont, A., Grancher, M.-S., Gousebet, G.: On the Lagrangian simulation of turbulence influence on droplet evaporation. Int. J. Heat Mass Transfer11, 2805–2812 (1991).

    Google Scholar 

  2. Hansell, D., Kennedy, I. M., Kollmann, W.: A simulation of particle dispersion in a turbulent jet. Int. J. Multiphase Flow18, 559–576 (1992).

    Google Scholar 

  3. Yeh, F., Lei, U.: On the motion of small particles in a homogeneous isotropic turbulent flow. Phys. Fluids3, 2571–2586 (1991).

    Google Scholar 

  4. Riley, J. J., Patterson, G. S.: Diffusion experiments with numerically integrated isotropic turbulence. Phys. Fluids17, 292–307 (1974).

    Google Scholar 

  5. Squires, K. D., Eaton, J. K.: Preferential concentration of particles by turbulence. Phys. Fluids3, 1169–1178 (1991).

    Google Scholar 

  6. Mashayek, F., Taulbee, D. B., Givi, P.: Statistical modeling and direct simulation of two-phase turbulent flows. In: Advanced computation and analysis of combustion (Roy, G. D., Frolov, S. M. and Givi, P., eds.), pp. 161–174. Moscow. Russia 1997.

  7. Elghobashi, S. E., Truesdell, G. C.: On the two-way interaction between homogeneous turbulence and dispersed solid particles. I: Turbulence modification. Phys. FluidsA5, 1790–1801 (1993).

    Google Scholar 

  8. Elghobashi, S. E., Truesdell, G. C.: On the two-way interaction between homogeneous turbulence and dispersed solid particles. II: Particle dispersion. Phys. Fluids6, 1405–1407 (1994).

    Google Scholar 

  9. Gousebet, G., Berlemont, A.: Eulerian and Lagrangian approaches for predicting the behaviour of discrete particles in turbulent flows. Prog. Energy Combust. Sci.25, 133–159 (1999).

    Google Scholar 

  10. Rose, M., Roth, P., Frolov, S. M., Neuhaus, M. G.: Lagrangian approach for modelling two-phase turbulent reactive flow. In: Advanced computation and analysis of combustion (Roy, G. D., Frolov, S. M. and Givi, P., eds.), pp. 175–194. Moscow, Russia 1997.

  11. Nigmatulin, P. I.: Dynamics of multiphase media (in Russian). Moscow: Nauka 1987.

    Google Scholar 

  12. Reichelt, B., Roth, P., Wang, L.: Stoßwellen in Gas-partikel-Gemischen mit Massenaustausch zwischen den Phasen. Wärme- und Stoffübertragung19, 101–111 (1985).

    Google Scholar 

  13. Pope, S. B.: PDF methods for turbulent reactive flows. Prog. Energ. Combust. Sci.11, 119–151 (1985).

    Google Scholar 

  14. Xu, Ch. R., Fu, W. B.: Study on the burning rate of a carbon particle under forced convection conditions. Comb. Sci. Tech.124, 167–182 (1997).

    Google Scholar 

  15. Fuchs, N. A.: The mechanics of aerosols, pp. 30–34. Oxford: Pergamon Press 1964.

    Google Scholar 

  16. Uphoff, U., Hänel, D., Roth, P.: Influence of reactive particles on the structure of detonation waves. Comb. Sci. Techn.110–111, 419–441 (1995).

    Google Scholar 

  17. Hirschfelder, J. O., Curtics, C. F., Bird, B.: Molecular theory of gases and liquids. New York: Wiley 1954.

    Google Scholar 

  18. Libby, P. S., Williams, F. A. (eds.): Turbulent reactive flows, chap. 7: Recent developments on PDF methods, pp. 375–474. London: Academic Press 1994.

    Google Scholar 

  19. Dopazo, C.: Probability density function approach for a turbulent axisymmetric heated jet centerline evolution. Phys. Fluids18, 397–410 (1975).

    Google Scholar 

  20. Pope, S. B.: An improved turbulent mixing model. Comb. Sci. Techn.28, 131–135 (1982).

    Google Scholar 

  21. Valino, L., Dopazo, C.: A binomial Langevin model for turbulent mixing. Phys. Fluids3, 3034–3037 (1975).

    Google Scholar 

  22. Kraichnan, R.: Closures for probability distributions. Bull. Amer. Phys. Soc.34, 2298–2315 (1989).

    Google Scholar 

  23. Pope, S. B.: Mapping closures for turbulent mixing and reaction. Theor. Comput. Fluid Dynamics2, 255–270 (1991).

    Google Scholar 

  24. Frolov, S. M., Basevich, V. Ya., Neuhaus, M. G., Belyaev, A. A., Detkovskii, D. A., Noskov, M. A.: A coupled finite volume-joint velocity-scalar probability density function approach for modeling NOx formation in gas turbine combustors. In: 8th ONR Propulsion Meeting (Roy, G. D. and Williams, F. A., eds.). La Jolla, Ca., 1995.

  25. Detkovskii, D. A., Frolov, S. M., Klemens, R., Tatschl, R., Mitgau, P., Wagner, H.-Gg.: Flame propagation in a free turbulent jet of premixed methane and dust-air mixtures. Archivum Combustionis16, 199–225 (1996).

    Google Scholar 

  26. Frolov, S. M., Basevich, V. Ya., Neuhaus, M. G., Tatschl, R.: A joint velocity-scalar PDF method for modeling premixed and nonpremixed combustion. In: Advanced computation and analysis of combustion (Roy, G. D., Frolov, S. M. and Givi, P., eds.). Moscow, Russia 1997.

  27. Kee, R. J., Miller, J. A., Jefferson, T. H.: CHEMKIN: A general-purpose, problem-independent, transportable, FORTRAN chemical kinetics code package. Technical report, Sandia National Laboratories, SAND80-8003, 1980.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rose, M., Roth, P. & Frolov, S.M. Modelling of a turbulent reacting gas/particle flow. Acta Mechanica 145, 45–63 (2000). https://doi.org/10.1007/BF01453644

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01453644

Keywords

Navigation