Skip to main content
Log in

Transient wave propagation in a one-dimensional poroelastic column

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

Biot's theory of porous media governs the wave propagation in a porous, elastic solid infiltrated with fluid. In this theory, a second compressional wave, known as the slow wave, has been identified. In this paper, Biot's theory is applied to a one-dimensional continuum. Despite the simplicity of the geometry, an exact solution of the full model, and a detailed analysis of the phenomenon, so far have not been achieved. In the present approach, an analytical solution in the Laplace transform domain is obtained showing clearly two compressional waves. For the special case of an inviscid fluid, a closed form exact solution in time domain is obtained using an analytical inverse Laplace transform. For the general case of a viscous fluid, solution in time domain is evaluated using the Convolution Quadrature Method of Lubich. Of all the inverse methods previously investigated, it seems that only the method of Lubich is efficies and stable enough to handle the highly transient cases such as impact and step loadings. Using properties of three widely different real materials, the wave propagating behavior, in terms of stress, pore pressure, displacement, and flux, are examined. Of most interest is the identification of second compressional wave and its sensitivity of material parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biot, M. A.: General theory of three-dimensional consolidation. Journal of Applied Physics12, 155–164 (1941).

    Google Scholar 

  2. Biot, M. A.: Theory of elasticity and consolidation for a porous anisotropic solid. Journal of Applied Physics26, 182–185 (1955).

    Google Scholar 

  3. Biot, M. A.: Theory of deformation of a porous viscoelastic anisotropic solid. Journal of Applied Physics27, (5) 459–467 (1956).

    Google Scholar 

  4. Biot, M. A.: Theory of propagation of elastic waves in a fluid-saturated porous solid I: Low-frequency range. Journal of the Acoustical Society of America28 (2), 168–178 (1956).

    Google Scholar 

  5. Biot, M. A.: Theory of propagation of elastic waves in a fluid-saturated porous solid II: Higher frequency range. Journal of the Acoustical Society of America28 (2), 179–191 (1956).

    Google Scholar 

  6. Plona, T. J.: Observation of a second bulk compressonal wave in porous medium at ultrasonic frequencies. Applied Physics Letters36 (4), 259–261 (1980).

    Google Scholar 

  7. Ehlers, W.: Porose Medien-ein kontinuumsmechanisches Modell auf der Basis der Mischungstheorie. Forschungsbericht aus dem Fachbereich Bauwesen 47, Universität-GH Essen 1989.

  8. Ehlers, W., Kubik, J.: On finite dynamic equations for fluid-saturated porous media. Acta Mechanica105, 101–117 (1994).

    Google Scholar 

  9. Grag, S. K., Nafeh, A. H., Good, A. J.: Compressional waves in fluid-saturated elastic porous media. Journal of Applied Physics45, 1968–1974 (1974).

    Google Scholar 

  10. Hong, S. J., Sandhu, R. S., Wolfe, W. E.: On Grag's solution of Biot's equations for wave propagation in a one-dimensional fluid-saturated elastic porous solid. International Journal for Numerical and Analytical Methods in Geomechanics12, 627–637 (1988).

    Google Scholar 

  11. Hiremath, M. S., Sandhu, R. S., Morland, L. W., Wolfe, W. E.: Analysis of one-dimensional wave propagation in a fluid-saturated finite soil column. International Journal for Numerical and Analytical Methods in Geomechanics12, 121–139 (1988).

    Google Scholar 

  12. Cheng, A. H.-D., Badmus, T., Beskos, D. E.: Integral equations for dynamic poroelasticity in frequency domain with BEM-solution. Journal of Engineering Mechanics ASCE117 (5), 1136–1157 (1991).

    Google Scholar 

  13. de Boer, R., Ehlers, W., Liu, Z.: One-dimensional transient wave propagation in fluid-saturated incompressible porous media. Archive of Applied Mechanics63, 59–72 (1993).

    Google Scholar 

  14. Vgenopoulou, I., Beskos, D. E.: Dynamic behavior of saturated poroviscoelastic media. Acta Mechanica95, 185–195 (1992).

    Google Scholar 

  15. Lubich, C.: Convolution quadrature and discretized operational calculus I. Numerische Mathematik52, 129–145 (1988).

    Google Scholar 

  16. Dubner, H., Abate, J.: Numerical inversion of Laplace transforms by relating them to the finite Fourier cosine transform. Journal of the Association for Computing Machinery15 (1), 115–123 (1968).

    Google Scholar 

  17. Durbin, F.: Numerical inversion of Laplace transforms: an efficient improvement to Dubner and Abate's method. The Compute Journal17 (4), 371–376 (1974).

    Google Scholar 

  18. Crump, K. S.: Numerical inversion of Laplace transforms using a Fourier series approximation. Journal of the Association for Computing Machinery23 (1), 89–96 (1976).

    Google Scholar 

  19. Cheng, A. H.-D., Sidauruk, P., Abousleiman, Y.: Approximate inversion of the Laplace transform. The Mathematica Journal4 (2), 76–82 (1994).

    Google Scholar 

  20. Schanz, M., Antes, H.: Application of “Operational Quadrature Methods” in time domain boundary element methods. Meccanica32 (3), 179–186 (1997).

    Google Scholar 

  21. Detournay, E., Cheng, A. H.-D.: Fundamentals of Poroelasticity, vol. II. Comprehensive rock engineering: Principles, practice & projects, chap. 5, 113–171. Pergamon Press 1993.

    Google Scholar 

  22. Bonnet, G., Auriault, J.-L.: Dynamics of saturated and deformable porous media: Homogenization theory and determination of the solid-liquid coupling coefficients. In Physics of Finely Divided Matter. (Boccara, N. and Daoud, M., eds.), 306–316. Berlin: Springer Verlag 1985.

    Google Scholar 

  23. Bonnet, G.: Basic singular solutions for a poroelastic medium in the dynamic range. Journal of the Acoustical Society of America82 (5), 1758–1762 (1987).

    Google Scholar 

  24. Graff, K. F.: Wave motion in elastic solids. Oxford University Press 1975.

  25. Narayanan, G. V. Beskos, D. E.: Numerical operational methods for time-dependent linear problems. International Journal for Numerical Methods in Engineering18, 1829–1854 (1982).

    Google Scholar 

  26. Kim, Y. K., Kingsbury, H. B.: Dynamic characterization of poroelastic materials. Experimental Mechanics19, 252–258 (1979).

    Google Scholar 

  27. Badiey, M., Cheng, A. H.-D., Mu, Y.: From geology to geoacoustics-evaluation of Biot-Stoll sound speed and attenuation for shallow water acoustics. Journal of the Acoustical Society of America103 (1), 309–320 (1998).

    Google Scholar 

  28. Lubich, C.: Convolution quadrature and discretized operational calculus II. Numerische Mathematik52, 413–425 (1988).

    Google Scholar 

  29. Schanz, M., Antes, H.: A new visco-and elastodynamic time domain boundary element formulation. Computational Mechanics20 (5), 452–459 (1997).

    Google Scholar 

  30. Schanz, M.: A boundary element formulation in time domain for viscoelastic solids. Communications in Numerical Methods in Engineering15, 799–809 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schanz, M., Cheng, A.H.D. Transient wave propagation in a one-dimensional poroelastic column. Acta Mechanica 145, 1–18 (2000). https://doi.org/10.1007/BF01453641

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01453641

Keywords

Navigation