Skip to main content
Log in

Yeast and vertebrate nuclear-pore complexes: evolutionary conserved, yet divergent macromolecular assemblies

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

The nuclear-pore complex (NPC), which consists of ca. 50 proteins called nucleoporins, is a huge macromolecular structure that spans the nuclear envelope and is an obligatory passage for molecules in transit between the cytoplasm and the nucleus. In the last years, major progress has allowed the characterization of the so-called “soluble phase’ of nucleocytoplasmic transport, that involves transport substrates, import and export receptors of which some belong to the karyopherin-β family, and the small GTPase Ran and its modulators. In addition, the knowledge of the NPC architecture, the identification of its constituents, and the determination of the hierarchy of interactions within the pore should help to understand how nucleoporins are assembled, and how they give rise to a functional NPC through interactions with specific transport factors. In this review, we will focus on recent insights into the stationary phase of nucleocytoplasmic transport (i.e., the NPCs) that have been gained from exploiting the benefits of several organisms, such asXenopus laevis oocytes, mammalian cell lines, and the yeastSaccharomyces cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FXFG:

phenylalanine X phenylalanine glycine

GLFG:

glycine leucine phenylalanine glycine

NPC:

nuclear-pore complex

RLNE:

rat liver nuclear envelope

WGA:

wheat germ agglutinin

References

  • Aitchison JD, Blobel G, Rout MP (1995a) Nup 120: a yeast nucleoporin required for NPC distribution and mRNA export. J Cell Biol 131: 1659–1675

    PubMed  Google Scholar 

  • —, Rout MP, Marelli M, Blobel G, Wozniak RW (1995b) Two novel related yeast nucleoporins Nup170p and Nup157p: complementation with the vertebrate homologue Nup 155p and functional interactions with the yeast nuclear pore-membrane protein Pom 152p. J Cell Biol 131: 1133–1148

    PubMed  Google Scholar 

  • Bailer SM, Siniossoglou S, Podtelejnikov A, Hellwig A, Mann M, Hurt E (1998) Nup116p and Nup100p are interchangeable through a conserved motif which constitutes a docking site for the mRNA transport factor Gle2p. EMBO J 17: 1107–1119

    PubMed  Google Scholar 

  • Bastos R, Ribas de Pouplana L, Enarson M, Bodoor K, Burke B (1997) Nup84, a novel nucleoporin that is associated with CAN/Nup214 on the cytoplasmic face of the nuclear pore complex. J Cell Biol 137: 989–1000

    PubMed  Google Scholar 

  • —, Panté N, Burke B (1995) Nuclear pore complex proteins. Int Rev Cytol 162B: 257–302

    PubMed  Google Scholar 

  • Belgareh N, Snay-Hodge C, Pasteau F, Dagher S, Cole CN, Doye V (1998) Functional characterization of a Nup 159p-containing nuclear pore subcomplex. Mol Biol Cell 9: 3475–3492

    PubMed  Google Scholar 

  • Borrow J, Shearman AM, Stanton VP Jr, Becher R, Collins T, Williams AJ, Dube I, Katz F, Kwong YL, Morris C, Ohyashiki K, Toyama K, Rowley J, Housman DE (1996) The t(7;11)(p15;p15) translocation in acute myeloid leukaemia fuses the genes for nucleoporin NUP98 and class I homeoprotein HOXA9. Nat Genet 12: 159–167

    PubMed  Google Scholar 

  • Bucci M, Wente SR (1998) A novel fluorescence-based genetic strategy identifies mutants of Saccharomyces cerevisiae defective for nuclear pore complex assembly. Mol Biol Cell 9: 2439–2461

    PubMed  Google Scholar 

  • Buss F, Kent H, Stewart M, Bailer SM, Hanover JA (1994) Role of different domains in the self-association of rat nucleoporin p62. J Cell Sci 107: 631–638

    Google Scholar 

  • Byrd DA, Sweet DJ, Panté N, Konstantinov KN, Guan TL, Saphire ACS, Mitchell PJ, Cooper CS, Aebi U, Gerace L (1994) Tpr, a large coiled coil protein whose amino terminus is involved in activation of oncogenic kinases, is localized to the cytoplasmic surface of the nuclear pore complex. J Cell Biol 127: 1515–1526

    Google Scholar 

  • Carmo-Fonseca M, Kern H, Hurt EC (1991) Human nucleoporin p62 and the essential yeast nuclear pore protein NSP1 show sequence homology and a similar domain organization. Eur J Cell Biol 55: 17–30

    PubMed  Google Scholar 

  • Chial H, Rout M, Giddings T, Winey M (1998) Saccharomyces cerevisiae Ndc1p is a shared component of nuclear pore complexes and spindle pole bodies. J Cell Biol 143: 1789–1800

    PubMed  Google Scholar 

  • Cordes VV, Reidenbach S, Rackwitz H-R, Franke WW (1997) Identification of protein p270/Tpr as a constitutive component of the nuclear pore complex-attached intranuclear filaments. J Cell Biol 136: 515–529

    Google Scholar 

  • —, Waizenegger I, Krohne G (1991) Nuclear pore complex glycoprotein p62 ofXenopus laevis and mouse: cDNA cloning and identification of its glycosylated region. Eur J Cell Biol 55: 31–47

    PubMed  Google Scholar 

  • Dabauvalle MC, Benavente R, Chaly N (1988) Monoclonal antibodies to a Mr 68,000 pore complex glycoprotein interfere with nuclear protein uptake in Xenopus oocytes. Chromosoma 97: 193–197

    PubMed  Google Scholar 

  • Davis LI, Blobel G (1986) Identification and characterization of a nuclear pore complex protein. Cell 45: 699–709

    PubMed  Google Scholar 

  • —, Fink GR (1990) The NUP1 gene encodes an essential component of the yeast nuclear pore complex. Cell 61: 965–978

    PubMed  Google Scholar 

  • DeHoratius C, Silver PA (1996) Nuclear transport defects and nuclear envelope alterations are associated with mutations of theSaccharomyces cerevisiae NPL4 gene. Mol Biol Cell 7: 1835–1855

    PubMed  Google Scholar 

  • Dingwall C, Kandels-Lewis S, Séraphin B (1995) A family of ran binding proteins that includes nucleoporins. Proc Natl Acad Sci USA 92: 7525–7529

    PubMed  Google Scholar 

  • D'Onofrio M, Starr CM, Park MK, Holt GD, Haltiwanger RS, Hart GW, Hanover JA (1988) Partial cDNA sequence encoding a nuclear pore protein modified by O-linked N-acetylglu-cosamine. Proc Natl Acad Sci USA 85: 9595–9599

    PubMed  Google Scholar 

  • Doye V, Hurt E (1997) From nucleoporins to nuclear pore complexes. Curr Opin Cell Biol 9: 401–411

    PubMed  Google Scholar 

  • —, Wepf R, Hurt EC (1994) A novel nuclear pore protein Nup133p with distinct roles in poly(A)+ RNA transport and nuclear pore distribution. EMBO J 13: 6062–6075

    PubMed  Google Scholar 

  • Fabre E, Hurt E (1997) Yeast genetics to dissect the nuclear pore complex and nucleocytoplasmic trafficking. Annu Rev Genet 31: 277–313

    PubMed  Google Scholar 

  • —, Boelens WC, Wimmer C, Mattaj IW, Hurt EC (1994) Nup145p is required for nuclear export of mRNA and binds homopolymeric RNA in vitro via a novel conserved motif. Cell 78: 275–289

    PubMed  Google Scholar 

  • Fahrenkrog B, Hurt EC, Aebi U, Panté N (1998) Molecular architecture of the yeast nuclear pore complex: localization of Nsplp subcomplexes. J Cell Biol 143: 577–588

    PubMed  Google Scholar 

  • Favreau C, Worman HJ, Wozniak RW, Frappier T, Courvalin JC (1996) Cell cycle-dependent phosphorylation of nucleoporins and nuclear pore membrane protein Gp210. Biochemistry 35: 8035–8044

    PubMed  Google Scholar 

  • Finlay DR, Forbes DJ (1990) Reconstitution of biochemically altered nuclear pores: transport can be eliminated and restored. Cell 60: 17–29

    PubMed  Google Scholar 

  • —, Newmeyer DD, Price TM, Forbes DJ (1987) Inhibition of in-vitro nuclear transport by a lectin that binds to nuclear pores. J Cell Biol 104: 189–200

    PubMed  Google Scholar 

  • Fontoura BM, Blobel G, Matunis MJ (1999) A conserved biogenesis pathway for nucleoporins: proteolytic processing of a 186-kilodalton precursor generates Nup98 and the novel nucleoporin Nup96. J Cell Biol 144: 1097–1112

    PubMed  Google Scholar 

  • Fornerod M, van Deursen J, van Baal S, Reynolds A, Davis D, Gopal Murti K, Fransen J, Grosveld G (1997) The human homologue of yeast CRM1 is in a dynamic subcomplex with CAN/Nup214 and a novel nuclear pore component Nup88. EMBO J 16: 807–816

    PubMed  Google Scholar 

  • —, Boer J, van Baal S, Morreau H, Grosveld G (1996) Interaction of cellular proteins with the leukemia specific fusion proteins DEK-CAN and SET-CAN and their normal counterpart, the nucleoporin CAN. Oncogene 13: 1801–1808

    PubMed  Google Scholar 

  • Gigliotti S, Callaini G, Andone S, Riparbelli MG, PernasAlonso R, Hoffmann G, Graziani F, Malva C (1998) Nup154, a new Drosophila gene essential for male and female gametogenesis is related to the Nup155 vertebrate nucleoporin gene. J Cell Biol 142: 1195–1207

    PubMed  Google Scholar 

  • Goldstein AL, Snay CA, Heath CV, Cole CN (1996) Pleiotropic nuclear defects associated with a conditional allele of the novel nucleoporin Rat9p/Nup85p. Mol Biol Cell 7: 917–934

    PubMed  Google Scholar 

  • Gorsch LC, Dockendorff TC, Cole CN (1995) A conditional allele of the novel repeat-containing yeast nucleoporin RAT7/NUP159 causes both rapid cessation of mRNA export and reversible clustering of nuclear pore complexes. J Cell Biol 129: 939–955

    PubMed  Google Scholar 

  • Grandi P, Dang T, Pane N, Shevchenko A, Mann M, Forbes D, Hurt E (1997) Nup93, a vertebrate homologue of yeast Nic96p, forms a complex with a novel 205-kDa protein and is required for correct nuclear pore assembly. Mol Biol Cell 8: 2017–2038

    PubMed  Google Scholar 

  • —, Emig S, Weise C, Hucho F, Pohl T, Hurt EC (1995a) A novel nuclear pore protein Nup82p which specifically binds to a fraction of Nsp1p. J Cell Biol 130: 1263–1273

    PubMed  Google Scholar 

  • —, Schlaich N, Tekotte H, Hurt EC (1995b) Functional interaction of Nic96p with a core nucleoporin complex consisting of Nsp1p, Nup49p and a novel protein Nup57p. EMBO J 14: 76–87

    PubMed  Google Scholar 

  • —, Doye V, Hurt EC (1993) Purification of NSP1 reveals complex formation with “GLFG” nucleoporins and a novel nuclear pore protein NIC96. EMBO J 12: 3061–3071

    PubMed  Google Scholar 

  • Greber UF, Senior A, Gerace L (1990) A major glycoprotein of the nuclear pore complex is a membrane-spanning polypeptide with a large luminal domain and a small cytoplasmic tail. EMBO J 9: 1495–1502

    PubMed  Google Scholar 

  • Grote M, Kubitscheck U, Reichelt R, Peters R (1995) Mapping of nucleoporins to the center of the nuclear pore complex by post-embedding immunogold electron microscopy. J Cell Sci 108: 2963–2972

    PubMed  Google Scholar 

  • Guan T, Muller S, Klier G, Panté N, Blevitt JM, Haner M, Paschal B, Aebi U, Gerace L (1995) Structural analysis of the p62 complex, an assembly of O-linked glycoproteins that localizes near the central gated channel of the nuclear pore complex. Mol Biol Cell 6: 1591–1603

    PubMed  Google Scholar 

  • Hallberg E, Wozniak RW, Blobel G (1993) An integral membrane protein of the pore membrane domain of the nuclear envelope contains a nucleoporin-like region. J Cell Biol 122: 513–521

    PubMed  Google Scholar 

  • Heath CV, Copeland CS, Amberg DC, Del Priore V, Snyder M, Cole CN (1995) Nuclear pore complex clustering and nuclear accumulation of poly(A)+ RNA associated with mutation of theSaccharomyces cerevisiae RAT2/NUP120 gene. J Cell Biol 131: 1677–1697

    PubMed  Google Scholar 

  • Hu T, Gerace L (1998) cDNA cloning and analysis of the expression of nucleoporin p45. Gene 221: 245–253

    PubMed  Google Scholar 

  • —, Guan T, Gerace L (1996) Molecular anf functional characterization of the p62 complex, an assembly of nuclear pore complex glycoproteins. J Cell Biol 134: 589–601

    PubMed  Google Scholar 

  • Hurt EC (1988) A novel nucleoskeletal-like protein located at the nuclear periphery is required for the life cycle ofSaccharomyces cerevisiae. EMBO J 7: 4323–4334

    PubMed  Google Scholar 

  • Hurwitz ME, Blobel G (1995) NUP82 is an essential yeast nucleoporin required for poly(A)+ RNA export. J Cell Biol 130: 1275–1281

    PubMed  Google Scholar 

  • —, Strambio-de-Castillia C, Blobel G (1998) Two yeast nuclear pore complex proteins involved in mRNA export form a cytoplasmically oriented subcomplex. Proc Natl Acad Sci USA 95: 11241–11245

    PubMed  Google Scholar 

  • Iovine MK, Wente SR (1997) A nuclear export signal in Kap95p is required for both recycling the import factor and interaction with the nucleoporin GLFG repeat regions of Nup116p and Nup100p. J Cell Biol 137: 797–811

    PubMed  Google Scholar 

  • Kadowaki T, Hitomi M, Chen S, Tartakoff AM (1994) Nuclear mRNA accumulation causes nucleolar fragmentation in yeast mtr2 mutant. Mol Biol Cell 5: 1253–1263

    PubMed  Google Scholar 

  • Kenna MA, Petranka JG, Reilly JL, Davis LI (1996) Yeast Nle3p/Nup170p is required for normal stoichiometry of FG nucleoporins within the nuclear pore complex. Mol Cell Biol 16: 2025–2036

    PubMed  Google Scholar 

  • King HW, Tempest PR, Merrifield KR, Rance AJ (1988) Tpr homologues activate met and raf. Oncogene 2: 617–619

    PubMed  Google Scholar 

  • Kita K, Omata S, Horigome T (1993) Purification and characterization of a nuclear pore glycoprotein complex containing p62. J Biochem 113: 377–382

    PubMed  Google Scholar 

  • Kraemer DM, Strambio-de-Castillia C, Blobel G, Rout MP (1995) The essential yeast nucleoporin NUP159 is located on the cytoplasmic side of the nuclear pore complex and serves in karyopherin-mediated binding of transport substrate. J Biol Chem 270: 19017–19021

    PubMed  Google Scholar 

  • —, Wozniak RW, Blobel G, Radu A (1994) The human CAN protein, a putative oncogene product associated with myeloid leukemogenesis, is a nuclear pore complex protein that faces the cytoplasm. Proc Natl Acad Sci USA 91: 1519–1523

    PubMed  Google Scholar 

  • Li O, Heath CV, Amberg DC, Dockendorff TC, Copeland CS, Snyder M, Cole CN (1995) Mutation or deletion of theSaccharomyces cerevisiae RAT3/NUP133 gene causes temperature-dependent nuclear accumulation of poly(A)+ RNA and constitutive clustering of nuclear pore complexes. Mol Biol Cell 6: 401–417

    PubMed  Google Scholar 

  • Loeb JDJ, Davis LI, Fink GR (1993) NUP2, a novel yeast nucleoporin, has functional overlap with other proteins of the nuclear pore complex. Mol Biol Cell 4: 209–222

    PubMed  Google Scholar 

  • Lu D, Yang H, Raizada MK (1998) Involvement of p62 nucleoporin in angiotensin II-induced nuclear translocation of STAT3 in brain neurons. J Neurosci 18: 1329–1336

    PubMed  Google Scholar 

  • Macaulay C, Meier E, Forbes DJ (1995) Differential mitotic phosphorylation of proteins of the nuclear pore complex. J Biol Chem 270: 254–262

    PubMed  Google Scholar 

  • Mahajan R, Delphin C, Guan TL (1997) A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88: 97–107

    PubMed  Google Scholar 

  • Marelli M, Aitchison J, Wozniak R (1998) Specific binding of the karyopherin Kap121p to a subunit of the nuclear pore complex containing Nup53p, Nup59p, and Nup170p. J Cell Biol 143: 1813–1830

    PubMed  Google Scholar 

  • Mattaj IW, Englmeier L (1998) Nucleocytoplasmic transport: the soluble phase. Annu Rev Biochem 67: 265–306

    PubMed  Google Scholar 

  • Matunis MJ, Wu JA, Blobel G (1998) SUMO-1 modification and its role in targeting the Ran GTPase-activating protein, RanGAPl, to the nuclear pore complex. J Cell Biol 140: 499–509

    PubMed  Google Scholar 

  • —, Coutavas E, Blobel G (1996) A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J Cell Biol 135: 1457–1470

    PubMed  Google Scholar 

  • McMorrow I, Bastos R, Horton H, Burke B (1994) Sequence analysis of a cDNA encoding a human nuclear pore complex protein, hnup153. Biochim Biophys Acta Gene Struct Express 1217: 219–223

    Google Scholar 

  • Mitchell PJ, Cooper CS (1992) The human tpr gene encodes a protein of 2094 amino acids that has extensive coiled-coil regions and an acidic C-terminal domain. Oncogene 7: 2329–2333

    PubMed  Google Scholar 

  • Murphy R, Watkins JL, Wente SR (1996) GLE2, aSaccharomyces cerevisiae homologue of theSchizosaccharomyces pombe export factorRAE1, is required for nuclear pore complex structure and function. Mol Biol Cell 7: 1921–1937

    PubMed  Google Scholar 

  • Nehrbass U, Rout MP, Maguire S, Blobel G, Wozniak RW (1996) The yeast nucleoporin Nup188p interacts genetically and physically with the core structures of the nuclear pore complex. J Cell Biol 133: 1153–1162

    PubMed  Google Scholar 

  • —, Kern H, Mutvei A, Horstmann H, Marshallsay B, Hurt EC (1990) NSP1: a yeast nuclear envelope protein localized at the nuclear pores exerts its essential function by its carboxy-terminal domain. Cell 61: 979–989

    PubMed  Google Scholar 

  • Ohno M, Fornerod M, Mattaj IW (1998) Nucleocytoplasmic transport: the last 200 nanometers. Cell 92: 327–336

    PubMed  Google Scholar 

  • Panté N, Aebi U (1995) Exploring nuclear pore complex structure and function in molecular detail. J Cell Sci Suppl 19: 1–11

    PubMed  Google Scholar 

  • — — (1993) The nuclear pore complex. J Cell Biol 122: 977–984

    PubMed  Google Scholar 

  • —, Bastos R, McMorrow I, Burke B, Aebi U (1994) Interactions and three-dimensional localization of a group of nuclear pore complex proteins. J Cell Biol 126: 603–617

    PubMed  Google Scholar 

  • Pemberton LF, Blobel G, Rosenblum J (1998) Transport routes through the nuclear pore complex. Curr Opin Cell Biol 10: 392–399

    PubMed  Google Scholar 

  • —, Rout MP, Blobel G (1995) Disruption of the nucleoporin gene NUP133 results in clustering of nuclear pore complexes. Proc Natl Acad Sci USA 92: 1187–1191

    PubMed  Google Scholar 

  • Powers MA, Macaulay C, Masiarz FR, Forbes DJ (1995) Reconstituted nuclei depleted of a vertebrate GLFG nuclear pore protein, p97, import but are defective in nuclear growth and replication. J Cell Biol 128: 721–736

    PubMed  Google Scholar 

  • Pryer NK, Salama NR, Schekman R, Kaiser CA (1993) Cytosolic Sec13p complex is required for vesicle formation from the endoplasmic reticulum in vitro. J Cell Biol 120: 865–875

    PubMed  Google Scholar 

  • Radu A, Moore MS, Blobel G (1995) The peptide repeat domain of nucleoporin Nup98 functions as a docking site in transport across the nuclear pore complex. Cell 81: 215–222

    PubMed  Google Scholar 

  • —, Blobel G, Wozniak RW (1994) Nup107 is a novel nuclear pore complex protein that contains a leucine zipper. J Biol Chem 269: 17600–17605

    PubMed  Google Scholar 

  • — — — (1993) Nup155 is a novel nuclear pore complex protein that contains neither repetitive sequence motifs nor reacts with WGA. J Cell Biol 121: 1–9

    PubMed  Google Scholar 

  • Santos-Rosa H, Moreno H, Simos G, Segref A, Fahrenkrog B, Panté N, Hurt E (1998) Nuclear mRNA export requires complex formation between Mex67p and Mtr2p at the nuclear pores. Mol Cell Biol 18: 6826–6838

    PubMed  Google Scholar 

  • Schlaich NL, Häner M, Lustig A, Aebi U, Hurt EC (1997) In vitro reconstitution of a heterotrimeric nucleoporin complex consisting of recombinant Nsp1p, Nup49p and Nup57p. Mol Biol Cell 8: 33–46

    PubMed  Google Scholar 

  • Segref A, Sharma K, Doye V, Hellwing A, Huber J, Lührmann R, Hurt EC (1997) Mex67p, a novel factor for nuclear mRNA export binds to both poly(A)+ RNA and nuclear pores. EMBO J 16: 3256–3271

    PubMed  Google Scholar 

  • Shah S, Forbes DJ (1998) Separate nuclear import pathways converge on the nucleoporin Nup153 and can be dissected with dominant negative inhibitors. Curr Biol 8: 1376–1386

    PubMed  Google Scholar 

  • —, Tugendreich S, Forbes D (1998) Major binding sites for the nuclear import receptor are the internal nucleoporin Nup153 and the adjacent nuclear filament protein Tpr. J Cell Biol 141: 31–49

    PubMed  Google Scholar 

  • Siniossoglou S, Wimmer C, Rieger M, Doye V, Tekotte H, Weise C, Emig S, Segref A, Hurt EC (1996) A novel complex of nucleoporins, wich includes Sec13p and a Sec13p homolog, is essential for normal nuclear pores. Cell 84: 265–275

    PubMed  Google Scholar 

  • Snow CM, Senior A, Gerace L (1987) Monoclonal antibodies identify a group of nuclear pore complex glycoproteins. J Cell Biol 104: 1143–1156

    PubMed  Google Scholar 

  • Stutz F, Neville M, Rosbash M (1995) Identification of a novel nuclear pore-associated protein as a functional target of the HIV-1 rev protein in yeast. Cell 82: 495–506

    PubMed  Google Scholar 

  • Sukegawa J, Blobel G (1993) A nuclear pore complex protein that contains zinc finger motifs, binds DNA, and faces the nucleoplasm. Cell 72: 29–38

    PubMed  Google Scholar 

  • Teixeira MT, Siniossoglou S, Podtelejnikov S, Benichou JC, Mann M, Dujon B, Hurt E, Fabre E (1997) Two functionally distinct domains generated by in vivo cleavage of Nup145p: a novel biogenesis pathway for nucleoporins. EMBO J 16: 5086–5097

    PubMed  Google Scholar 

  • Von Lindern M, Fornerod M, Van Baal S, Jaegle M, De Wit T, Buijs A, Grosveld G (1992) The translocation (6;9), associated with specific subtype of acute myeloid leukemia, results in the fusion of two genes, dek and can, and the expression of a chimeric, leukemia-specific dek-can mRNA. Mol Cell Biol 12: 1687–1697

    PubMed  Google Scholar 

  • Wente SR, Blobel G (1994) NUP145 encodes a novel yeast glycine-leucine-phenylalanine-glycine (GLFG) nucleoporin required for nuclear envelope structure. J Cell Biol 125: 955–969

    PubMed  Google Scholar 

  • —, Gasser SM, Caplan AJ (1996) The nucleus and nucleocytoplasmic transport inSaccharomyces cerevisiae. In: Broach JR, Jones E, Pringle J (eds) The molecular and cellular biology of the yeastSaccharomyces, vol 3. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 471–546

    Google Scholar 

  • —, Rout MP, Blobel G (1992) A new family of yeast nuclear pore complex proteins. J Cell Biol 119: 705–723

    PubMed  Google Scholar 

  • West RR, Vaisberg EV, Ding R, Nurse P, McIntosh JR (1998) cut11(+): a gene required for cell cycle-dependent spindle pole body anchoring in the nuclear envelope and bipolar spindle formation inSchizosaccharomyces pombe. Mol Biol Cell 9: 2839–2855

    PubMed  Google Scholar 

  • Wimmer C, Doye V, Grandi P, Nehrbass U, Hurt E (1992) A new subclass of nucleoporins that functionally interacts with nuclear pore protein NSP1. EMBO J 11: 5051–5061

    PubMed  Google Scholar 

  • Winey M, Hoyt MA, Chan C, Goetsch L, Botstein D, Byers B (1993) NDC1: a nuclear periphery component required for yeast spindle pole body duplication. J Cell Biol 122: 743–751

    PubMed  Google Scholar 

  • Wozniak RW, Blobel G (1992) The single transmembrane segment of gp210 is sufficient for sorting to the pore membrane domain of the nuclear envelope. J Cell Biol 119: 1441–1449

    PubMed  Google Scholar 

  • — —, Rout MP (1994) POM152 is an integral protein of the pore membrane domain of the yeast nuclear envelope. J Cell Biol 125: 31–42

    PubMed  Google Scholar 

  • —, Bartnik E, Blobel G (1989) Primary structure analysis of an integral membrane glycoprotein of the nuclear pore. J Cell Biol 108: 2083–2092

    PubMed  Google Scholar 

  • Wu J, Matunis MJ, Kraemer D, Blobel G, Coutavas E (1995) Nup358, a cytoplasmically exposed nucleoporin with peptid repeats, Ran/GTP binding sites, zing fingers, a Cyclophilin A homologous domain, and a leucine-rich region. J Biol Chem 270: 14209–14213

    PubMed  Google Scholar 

  • Yang Q, Rout MP, Akey CW (1998) Three-dimensional architecture of the isolated yeast nuclear pore complex: functional and evolutionary implications. Mol Cell 1: 223–234

    PubMed  Google Scholar 

  • Yokoyama N, Hayashi N, Seki T, Panté N, Ohba T, Nishii K, Kuma K, Hayashida T, Miyata T, Aebi U, Fukui M, Nishimoto T (1995) A giant nucleopore protein that binds Ran/TC4. Nature 376: 184–188

    PubMed  Google Scholar 

  • Yoon JH, Whalen WA, Bharathi A, Shen RL, Dhar R (1997) Npp106p, a Schizosaccharomyces pombe nucleoporin similar to Saccharomyces cerevisiae Nic96p, functionally interacts with Raelp in mRNA export. Mol Cell Biol 17: 7047–7060

    PubMed  Google Scholar 

  • Zabel U, Doye V, Tekotte H, Wepf R, Grandi P, Hurt EC (1996) Nic96p is required for nuclear pore formation and functionally interacts with a novel nucleoporin, Nup188p. J Cell Biol 133: 1141–1152

    PubMed  Google Scholar 

  • Zimowska G, Aris JP, Paddy MR (1997) A Drosophila Tpr protein homolog is localized both in the extrachromosomal channel network and to nuclear pore complexes. J Cell Sci 110: 927–944

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belgareh, N., Doye, V. Yeast and vertebrate nuclear-pore complexes: evolutionary conserved, yet divergent macromolecular assemblies. Protoplasma 209, 133–143 (1999). https://doi.org/10.1007/BF01453442

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01453442

Keywords

Navigation