Mathematische Annalen

, Volume 268, Issue 4, pp 533–538 | Cite as

Klein surfaces with maximal symmetry and their groups of automorphisms

  • J. J. Etayo Gordejuela
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alling, N.L., Greenleaf, N.: Foundation of the theory of Klein surfaces. Lecture Notes in Mathematics, Vol. 219. berlin, Heidelberg, New York: Springer 1971Google Scholar
  2. 2.
    Bujalance, E.: Normal subgroups of NEC groups. Math. Z.178, 331–341 (1981)Google Scholar
  3. 3.
    Bujalance, E.: Proper periods of normal NEC subgroups with even index. Rev. Mat. Hisp.-Amer.41, 121–127 (1981)Google Scholar
  4. 4.
    coxeter, H.S.M.: The abstract groupsG m, n, p. Trans. Am. Math. Soc.45, 73–150 (1939)Google Scholar
  5. 5.
    Coxeter, H.S.M.: The abstract groupG 3, 7, 16. Proc. Edinburgh Math. Soc.13, 47–61 189 (1962)Google Scholar
  6. 6.
    Greenleaf, N., May, C.L.: Bordered Klein surfaces with maximal symmetry. Trans. Am. Math. Soc.274, 265–283 (1982)Google Scholar
  7. 7.
    Leech, J.: Some definitions of Klein's simple group of order 168 and other groups. Proc. Glasgow Math. Assoc.5, 166–175 (1972)Google Scholar
  8. 8.
    May, C.L.: A bound for the number of automorphisms of a compact Klein surface with boundary. Proc. Am. Math. Soc.63, 273–280 (1977)Google Scholar
  9. 9.
    May, C.L.: Large automorphism groups of compact Klein surfaces with boundary. Glasgow Math. J.18, 1–10 (1977)Google Scholar
  10. 10.
    Preston, R.: Projective structures and fundamental domains on compact Klein surfaces. Ph. D. thesis. Univ. of Texas (1975)Google Scholar
  11. 11.
    Singerman, D.: On the structure of non-euclidean crystallographic groups. Proc. Cambridge Phil. Soc.76, 233–240 (1974)Google Scholar
  12. 12.
    Sinkov, A.: On generating the simple group LF(2,2N) by two operators of periods two and three. Bull. Am. Math. Soc.44, 449–455 (1938)Google Scholar
  13. 13.
    Wilkie, M.C.: On non-euclidean crystallographic groups. Math. Z.91, 87–102 (1966)Google Scholar
  14. 14.
    Zieschang, H., Vogt, E., Coldewey, H.D.: Surfaces and planar discontinuous groups. Lecture Notes in Mathematics, Vol. 835. berlin, Heidelberg, New York: Springer 1980Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • J. J. Etayo Gordejuela
    • 1
  1. 1.Dpto. de geometria y Topologia, Facultad de Ciencias MatematicasUniversidad ComplutenseMadridSpain

Personalised recommendations