Skip to main content
Log in

Electrolytic conductivity of poly(1,3-propylene phosphate) solutions containing mono- and divalent-counterions

  • Polymer Science
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The results of conductivity measurements for aqueous solutions of poly(1,3-propylene phosphate) (PPP), which can be considered as a synthetic analogue of naturally occurring teichoic acids, are reported. Experiments were carried out with oligomeric fractions of a polymer in acidic, sodium, potassium, magnesium and calcium forms. The concentration and molecular weight dependence of the equivalent conductivity of PPP was analysed and the limiting equivalent conductivity determined. From the conductivity data, the polyion-counterion interaction parameter F and the equivalent conductivity of a polyion λ p were calculated. It was shown that both F and λ p depend on polyelectrolyte solution concentration and molecular weight of PPP. Conclusions concerning mono- and divalent metal ions binding to PPP are drawn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heprinstall S, Archibald AR, Baddiley J (1970) Nature 225:519

    PubMed  Google Scholar 

  2. Hughes AH, Hancock IC, Baddiley J (1973) Biochem J 132:83

    PubMed  Google Scholar 

  3. Lambert PA, Hancock IC, Baddiley J (1975) Biochem J 149:519

    PubMed  Google Scholar 

  4. Munson RS, Glaser L (1981) In: Ginsburg V (ed) Biology of Carbohydrates, Vol I, Wiley, New York, p 109

    Google Scholar 

  5. Naumova IB (1973) Usp Sovrem Biol 75:357

    PubMed  Google Scholar 

  6. Wódzki R, Kałuzyński K (1984) Makromol Chem Rapid Commun 5:385

    Google Scholar 

  7. Litowska M, Narebska A (1984) Coll Polym Sci 262:455, 461

    Google Scholar 

  8. Litowska M (1986) Coll Polym Sci 264:352

    Google Scholar 

  9. Huizinga JR, Grieger PF, Wall FT (1950) J Am Chem Soc 72:4228

    Google Scholar 

  10. Darskus RL, Jordan DO, Kurucsev T (1966) Trans Faraday Soc 62:2876

    Google Scholar 

  11. Jordan DO, Kurucsev T, Martin M (1969) Trans Faraday Soc 65:606

    Google Scholar 

  12. Kowblanski M, Ander P (1977) J Phys Chem 81:2024

    Google Scholar 

  13. Manning GS (1970) Biopolymer 9:1534

    Google Scholar 

  14. Dolar D, Špan J, Pretnar A (1968) J Polym Sci, Part C 16:3557

    Google Scholar 

  15. Katchalsky A (1971) Pure Appl Chem 26:327

    Google Scholar 

  16. Špan J, Gačeša A (1974) Z Phys Chem 90:26

    Google Scholar 

  17. Joshi YM, Kwak JCT (1980) Biophys Chem 12:323

    Google Scholar 

  18. Thibault JS, Rinaudo M (1985) Biopolymers 24:2131

    Google Scholar 

  19. Vink H (1982) Makromol Chem 183:2273

    Google Scholar 

  20. Vink H (1983) J Chem Soc Faraday Trans 1 79:1403

    Google Scholar 

  21. Kałużyński K, Libiszowski J, Penczek S (1976) Macromolecules 9:365

    Google Scholar 

  22. Szymczak J, Holyk P, Ander P (1975) J Phys Chem 79:269

    Google Scholar 

  23. Kwak JCT, Hayes PC (1975) J Phys Chem 79:265

    Google Scholar 

  24. Eisenberg H, Ram Mohan G (1959) J Phys Chem 63:671

    Google Scholar 

  25. Chatterji AC, Bhargara HH (1960) Kolloid-Z 170:116

    Google Scholar 

  26. Eisenberg H (1958) J Polym Sci 30:47

    Google Scholar 

  27. Varoqui R, Strauss UP (1968) J Phys Chem 72:2507

    Google Scholar 

  28. Nelson RE, Ander P (1971) J Phys Chem 75:1691

    Google Scholar 

  29. Strauss UP, Ross PD (1959) J Am Chem Soc 81:5295

    Google Scholar 

  30. Kennedy J, Wheeler VJ (1959) Chem Ind 1577

  31. Kuznetsov IA, Gorshkov VI, Ivanov VA, Kargov SI, Korolev NI, Filippov SM, Khamishov RKh (1984) React Polym 3:37

    Google Scholar 

  32. Wódzki R, Narebska A (1986) In: Kuczera J, Przestalski S (eds) Biophysics of Membrane Transport, Vol II, Agricultural University of Wroław, p 324

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ostrowska-Czubenko, J., Wódzki, R. Electrolytic conductivity of poly(1,3-propylene phosphate) solutions containing mono- and divalent-counterions. Colloid & Polymer Sci 266, 35–40 (1988). https://doi.org/10.1007/BF01451529

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01451529

Key words

Navigation