Skip to main content
Log in

Numerical analysis of complex dielectric mixture formulae

  • Polymer Science
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

As a continuation of our earlier work (Ref. [9]) the complex (frequency dependent) dielectric behaviour of some mixture formulae are studied numerically. These include matrix-inclusion type formulae (as the Wagner-Sillars or the Bruggeman-Boyle equations), mean-field statistical mixture formulae (as the Böttcher-Hsu equation) and symmetrical integral formulae (as the Looyenga equation). The frequency dependent dielectric properties are first calculated for a model system at various particle shapes, field orientations and volume fractions. After this, the validity of these equations is checked on typical sets of experimental data. For low loss powders, the Böttcher and Looyenga equations are suggested; for emulsions, suspensions and filled polymers, the matrix-inclusion type formulae give acceptable results in most cases, while for metal-insulator composites mean-field statistical mixture formulae have to be used, as they are capable of describing the percolation phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meredith RE, Tobias ChW (1962) In: Tobias ChW (ed) Advances in Electrochemistry and Electrochemical Engineering, Vol 2, Interscience, New York London, p 15

    Google Scholar 

  2. van Beek LKH (1967) In: Birks JB (ed) Progress in Dielectrics, Vol 7, Heywood, London, p 69

    Google Scholar 

  3. Hanai T (1968) In: Sherman P (ed) Emulsion Science, Academic Press, New York London, p 353

    Google Scholar 

  4. Dukhin SS (1971) In: Matijevic E (ed) Surface and Colloid Science, Vol 3, Interscience, New York, p 83

    Google Scholar 

  5. Landauer R (1978) In: Garland JC, Tanner DB (eds) Electrical Transport and Optical Properties of Inhomogeneous Media, American Institute of Physics, New York, p 2

    Google Scholar 

  6. Grosse C, Greffe JL (1979) J Chim Phys 76:305

    Google Scholar 

  7. Clausse M (1983) In: Becker P (ed) Encyclopedia of Emulsion Technology, Vol 1, M Dekker, New York, p 481

    Google Scholar 

  8. Sen PN, Chew WC, Wilkinson D (1984) In: Johnson DL, Sen PN (eds) Physics an Chemistry of Porous Media, American Institute of Physics, New York, p 52

    Google Scholar 

  9. Bánhegyi G (1986) Coll & Polym Sci 264:1030

    Google Scholar 

  10. Wagner KW (1914) Arch Electrotechn 2:371

    Google Scholar 

  11. Sillars RW (1937) J Inst Electr Engrs 80:378

    Google Scholar 

  12. Fricke H (1953) J Phys Chem 57:934

    Google Scholar 

  13. Bruggeman DAG (1935) Ann Phys, Leipzig 24:636

    Google Scholar 

  14. Hanai T, Koizumi N (1976) Bull Inst Chem Res Kyoto Univ 54:248

    Google Scholar 

  15. Hanai T, Ishikawa A, Koizumi N (1977) Bull Inst Chem Res Kyoto Univ 55:376

    Google Scholar 

  16. Hanai T, Kita Y, Koizumi N (1980) Bull Inst Chem Res Kyoto Univ 58:534

    Google Scholar 

  17. Boned C, Peyrelasse J, Clausse M, Lagrouette B, Alliez J, Babin L (1979) Coll & Polym Sci 257:1073

    Google Scholar 

  18. Boned C, Peyrelasse J (1983) Coll & Polym Sci 261:600

    Google Scholar 

  19. Boyle MH (1985) Coll & Polym Sci 263:51

    Google Scholar 

  20. Springen BE (1973) Phys Rev Lett 31:1463

    Google Scholar 

  21. Cohen RW, Cody GD, Coutts MD, Abeles B (1973) Phys Rev B8:3689

    Google Scholar 

  22. Webman I, Jortner J (1977) Phys Rev B15:5712

    Google Scholar 

  23. Wood DM, Ashcroft NW (1977) Philos Mag 35:269

    Google Scholar 

  24. Granquist CG, Hunderi O (1978) Phys Rev B18:2897

    Google Scholar 

  25. Granquist CG, Hunderi O (1979) J Appl Phys 50:1058

    Google Scholar 

  26. Sheng P (1980) Phys Rev Lett 45:60

    Google Scholar 

  27. Böttcher CJF (1945) Rec Trav Chim 64:47

    Google Scholar 

  28. Hsu WY, Gierke TD, Molnar JC (1983) Macromol 16:1945

    Google Scholar 

  29. Landau LD, Lifshitz EM (1960) Electrodynamics of Continuous Media, Pergamon Press, London, p 46

    Google Scholar 

  30. Looyenga H (1965) Physica 31:401

    Google Scholar 

  31. Davies WEA (1971) J Phys D4:318

    Google Scholar 

  32. Davies WEA (1974) J Phys D7:1016

    Google Scholar 

  33. Dube DC, Parshad R (1970) J Phys D3:677

    Google Scholar 

  34. Dube DC (1970) J Phys D3:1648

    Google Scholar 

  35. Hanai T, Koizumi N, Gotoh R (1962) Bull Inst Chem Res Kyoto Univ 40:240

    Google Scholar 

  36. Voet A (1947) J Phys Chem 51:1037

    Google Scholar 

  37. Chung KT, Sabo A, Pica AP (1982) J Appl Phys 53:6867

    Google Scholar 

  38. Grannan DM, Garland JC, Tanner DB (1981) Phys Rev Lett 46:375

    Google Scholar 

  39. Stafeev AV, Sazhina AB, Boitskov KA, Saltanova VB, Kharitonov YeV (1986) Vysokomol Soed 28:2355

    Google Scholar 

  40. Granquist CG, Hunderi O (1978) Phys Rev B18:1554

    Google Scholar 

  41. Cherqaoui B, Guillet J (1985) Makromol Chem, Rapid Commun 6:133

    Google Scholar 

  42. Graham HC, Tallan NM, Mazdiyasni KS (1971) J Am Ceram Soc 54:548

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bánhegyi, G. Numerical analysis of complex dielectric mixture formulae. Colloid & Polymer Sci 266, 11–28 (1988). https://doi.org/10.1007/BF01451527

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01451527

Key words

Navigation