Skip to main content
Log in

Solid state extrusion of thermoplastic elastomers 4

Structure property relationships in solid state extruded block copoly (ether ester)

  • Polymer Science
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A solid state extrusion technique is applied as to produce oriented block copoly(ether ester) under various physical conditions. The morphology of the extruded samples is characterized in relation to the extrusion parameters and hard segment compositions of the polymer, using thermal analysis and X-ray methods. The lateral dimensions of the crystalline domains are found to be approximately 150 Å depending on the extrusion conditions. The statistics of the long range periodicity of the structure along the extrusion direction is in agreement with a one-dimensional two phase model, the crystalline portion of which does not vary much in thickness (35 – 45 Å). The unexpected increase in the long period and the thermal shrinkage suggest the existence of strained interlamellar amorphous chains (tie molecules). The observed variations in tensile properties are interpreted under the assumption that both the number of such tie molecules and their fully extended lengths are determined by the hard segment composition and the extrusion conditions. It is also argued that the increase in the glass transition temperature is not only a function of the composition of hard segments in the amorphous phase but also of the number of strained tie molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cella RJ (1977) Encyclopedia of Polymer Science and Technology, J. Wiley & Sons, New York Supp Vol II, p 485

    Google Scholar 

  2. Buck WH, Cella RJ, Gladding EK, Wolfe Jr JR (1974) J Polymer Sci, Polym Symp 48:47

    Google Scholar 

  3. Shen M, Mehra U, Niinomi M, Koberstein JT, Cooper SL (1974) J Appl Phys 45:4182

    Google Scholar 

  4. Wegner G, Fujii T, Meyer W, Lieser G (1978) Angew Makromol Chem 74:295

    Google Scholar 

  5. Lilaonitkul A, West JC, Cooper SL (1976) J Macromol Sci, Phys Ed 12:563

    Google Scholar 

  6. Bandara U, Dröscher M (1983) Colloid Polym Sci 261:26

    Google Scholar 

  7. Zhu L-L, Wegner G (1981) Makromol Chem 182:3625

    Google Scholar 

  8. Wegner G, Zhu L-L, Lieser G, Tu H-L (1981) Makromol Chem 182:231

    Google Scholar 

  9. Dröscher M, Regel W (1979) Polym Bull 1:551

    Google Scholar 

  10. Dröscher M (1982) Adv Polym Sci 47:119

    Google Scholar 

  11. Bandara U, Dröscher M (1982) Rheol Acta 21:435

    Google Scholar 

  12. Bandara U, Dröscher M (1982) Angew Makromol Chem 107:1

    Google Scholar 

  13. Zachariades AE, Mead WT, Porter RS (1981) Chem Rev 80:351

    Google Scholar 

  14. Hoeschele GK (1977) Angew Makromol Chem 58/59:299

    Google Scholar 

  15. Kratky O, Pilz I, Schitz PI (1966) J Colloid Interface Sci 21:24

    Google Scholar 

  16. Wilke W (1981) Colloid Polym Sci 259:577

    Google Scholar 

  17. Blundell DJ (1970) Acta Cryst A 26:472

    Google Scholar 

  18. Welte W, Kreutz W (1979) Adv Polym Sci 30:161

    Google Scholar 

  19. Bonart R (1966) Koll — Z u Z Polymere 211:14

    Google Scholar 

  20. Hosemann R (1950) Koll ZS 119:129

    Google Scholar 

  21. Hermans JJ (1974) Rec Trav Chim Phys-Bas 63:211

    Google Scholar 

  22. Bonart R (1975) Proceedings of the International Wool Textile Research Conference, Vol II, Aachen

  23. Porod G (1951) Koll ZS 124:83

    Google Scholar 

  24. Krause S (1972) J Macromol Sci Rev Macromol Chem C 7:251

    Google Scholar 

  25. Wunderlich B (1980) “Macromolecular Physics”, Academic Press, New York, Vol 3, p 191

    Google Scholar 

  26. Illers KH (1980) Colloid Polym Sci 258:117

    Google Scholar 

  27. Desborough IJ, Hall IH (1977) Polymer 18:825

    Google Scholar 

  28. Fischer EW, Goddar H, Schmidt GF (1968) Makromol Chem 119:170

    Google Scholar 

  29. Riva F, Forte A, Della Monica C (1981) Colloid Polym Sci 259:606

    Google Scholar 

  30. Matsu M, Geshi K, Moriyama A, Sanatari C (1982) Macromolecules 15:193

    Google Scholar 

  31. Noether HD (1978) Polym Preprints, Amer Chem Soc/Div Polym Chem 19:320

    Google Scholar 

  32. Takayanagi M, Imada K, Kajiyama T (1966) J Polym Sci C 15:263

    Google Scholar 

  33. Bonart R (1979) Polymer 20:1389

    Google Scholar 

  34. van Krevelen DW (1972) Properties of Polymers — Correlations with Chemical Structure, Elsevier Publishing Company, Amsterdam p 161

    Google Scholar 

  35. Wegner G, Bandara U in preparation

  36. Samuels SL (1974) Structured Polymer Properties, J Willey & Sons, New York, p 215

    Google Scholar 

  37. Bonart R (1977) Angew Makromol Chem 58/59:259

    Google Scholar 

  38. Peterlin A (1977) (eds) Cifferri A, Ward IM, Ultra-High Modulus Polymers, Applied Science Publishers, London, p 36

    Google Scholar 

  39. Gordon M, Taylor JS (1952) J Appl Chem 2:493

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Herrn Dr. Dr. h. c. H. Hellmann zum 70. Geburtstag gewidmet.

Part 3 cf. lit [11]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bandara, U., Dröscher, M. & Thomas, E.L. Solid state extrusion of thermoplastic elastomers 4. Colloid & Polymer Sci 262, 538–550 (1984). https://doi.org/10.1007/BF01451517

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01451517

Key words

Navigation