International Journal of Biometeorology

, Volume 18, Issue 1, pp 46–56 | Cite as

Further observations on the effect of air ions on influenza in the mouse

  • A. P. Krueger
  • E. J. Reed
  • M. B. Day
  • K. A. Brook


In earlier papers we reported that the course of respiratory infections in mice produced by intranasal instillation of measured amounts of: (1) a fungus, COCCIDIOIDES IMMITIS, (2) a bacterium, KLEBSIELLA PNEUMONIAE and (3) a virus, PR8 strain of influenza virus was materially affected by the air ion environment. When the challenge dose of influenza virus was administered as an aerosol, as described here, the cumulative mortality rate was completely uninfluenced by shifts in the concentration of positive and negative air ions in the ambient atmosphere and by the accompanying electrical fields. A hypothetical mechanism accounting for the different results obtained with intranasal and aerosol challenge is presented.


Influenza Respiratory Infection Influenza Virus Klebsiella Measured Amount 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


In früheren Arbeiten wurde über den Verlauf von Infektionen der Atemwege von Mäusen nach intranasaler Instillation bekannter Mengen (1) des Fungus COCCIDIOIDES IMMITIS, (2) KLEBSIELLA PNEUMONIAE und (3) PR8 Influenzavirus berichtet, die durch Luftionen beeinflusst waren. Hier wurde die Dosis von Influenzavirus als Aerosol verabreicht. Die kumulative Mortalitätsrate wurde durch den Wechsel der Konzentrationen von positiven und negativen Luftionen in der Umgebungsatmosphäre und begleitenden elektrischen Feldern nicht beeinflusst. Eine Erklärung für die unterschiedlichen Ergebnisse bei intranasaler und Aerosol-Virusapplikation wird diskutiert.


Dans des travaux précédents, on a montré que l'évolution de maladies du système respiratoire provoquées chez des souris par l'instillation intranasale de doses déterminées d'agents pathogènes était affectée de façon significative par le taux d'ionisation de l'air ambiant. Il s'agissait d'agents cryptogamiques (COCCIDIOIDES IMMITIS), bactériens (KLEBSIELLA PNEUMONIAE) et de virus (lignée PR8 du virus de la grippe). Lorsque la dose minimum de virus grippal est appliquée sous forme d'aérosole — selon la méthode décrite ici — le taux cumulatif de mortalité n'est aucunement influencé par les variations de concentration d'ions positifs ou négatifs de l'air ambiant ni par les champs électriques qui les accompagnent. On développe une hypothèse pour expliquer la diversité des résultats obtenus au moyen des infectations intranasales ou par aérosoles.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ANDERSEN, I. (1969): The effect of ionized air on ciliary activity in trachea. Biometeorology 4. S.W.Tromp and W.H. Weihe (ed.), Suppl. to vol.14 Int.J.Biometeor., Swets & Zeitlinger, Amsterdam, Part II, 135.Google Scholar
  2. BOULATOV, P.C. (1968): Treatment of bronchial asthma with negative aeroionization. In: Aeroionotherapy. The Carlo Erba Foundation, Milan, Italy, 72–77.Google Scholar
  3. CRANDELL, M.D. and BACHMAN, C.H. (1968): Retention of inhaled air ions by humans. Aerospace Med., 39: 972–974.Google Scholar
  4. DIMMICK, R.L. and AKERS, A.B. (1969): An Introduction to Experimental Aerobiology. Wiley - Interscience; John Wiley & Sons; New York, p.82.Google Scholar
  5. DRUETT, H.A., HENDERSON, D.W., PACKMAN, L. and PEACOCK, S. (1953): The influence of particle size on respiratory infection with Anthrax spores. J.Hyg. (Lond.), 51: 359–371.Google Scholar
  6. DRUETT, H.A., ROBINSON, J.M. and HENDERSON, D.W. (1956): Studies on respiratory infection. II. The influence of aerosol particle size on infection of the guinea pig with PASTEURELLA PESTIS. J.Hyg. (Lond.), 54: 37–48.Google Scholar
  7. DRUETT, H.A., HENDERSON, D.W. and PEACOCK, S. (1956): Studies on respiratory infection. III. Experiments with BRUCELLA SUIS. J.Hyg. (Lond.), 54: 49–57.Google Scholar
  8. FRIEDRICH, H. (1966): Erzeugung und Messung atmosphärischer Ionen für medizinische Untersuchungen und ihr Einfluss auf Reaktionszeit und Muskeleigenreflex des Menschen. Dissertation Tech. Hochschule, München.Google Scholar
  9. GARATTINI, S. and VALZELLI, L. (1965): Serotonin. Elsevier Publishing Co., Amsterdam, 181–182.Google Scholar
  10. GILBERT, G.O. (1971): Effect of negative air ions upon emotionality and brain serotonin levels in isolated rats. Thesis. Pacific Lutheran University.Google Scholar
  11. GOLDSTEIN, E., GREEN, G.M. and SEAMANS, C. (1969): The effect of silicosis on the antibacterial defense mechanisms of the murine lung. J.infect.Dis., 120: 210–216.PubMedGoogle Scholar
  12. GOODLOW, R.J. and LEONARD, F.A. (1961): Viability and infectivity of microorganisms in experimental airborne infection. Bact. Rev., 25: 182–187.PubMedGoogle Scholar
  13. GREEN, G.M. (1970): Integrated defense mechanisms in models of chronic pulmonary disease. Arch. intern.Med., 126: 500–503.PubMedGoogle Scholar
  14. GREEN, G.M. and GOLDSTEIN, E. (1966): Nonspecific resistance to bacterial infection in laboratory models of chronic pulmonary disease. Amer.Rev.Resp. Dis., 94: 491–492.Google Scholar
  15. GUILLERM, R., BADRE, R. and HEE, J. (1966): Effects of light atmospheric ions on the ciliary activity of sheep and rabbit tracheal mucosa in vitro. C.R.Acad.Sci. (D) (Paris), 262: 669–671.Google Scholar
  16. KOZHENKOV, V.I. and KITAEV, A.V. (1965): Settling of gas ions on respiratory organs. Nov.Med.Tekhn., 3: 134–138. (Russian)Google Scholar
  17. KRUEGER, A.P. (1969): Preliminary consideration of the biological significance of air ions. Scientia, Sept–Oct, 1–17.Google Scholar
  18. KRUEGER, A.P. and LEVINE, H.B. (1967): The effect of unipolar positively ionized air on the course of coccidioidomycosis in mice. Int.J.Biometeor., 10: 279–288.Google Scholar
  19. KRUEGER, A.P. and REED, E.J. (1972): Effect of the air ion environment on influenza in the mouse. Int.J.Biometeor., 16: 209–232.Google Scholar
  20. KRUEGER, A.P. and SMITH, R.F. (1959): An enzymatic basis for the acceleration of ciliary activity by negative air ions. Nature (Lond.), 183: 1322–1333.Google Scholar
  21. KRUEGER, A.P. and SMITH, R.F. (1960a): The biological mechanisms of air ion action. I. 5-hydroxytryptamine as the endogenous mediator of positive air ion effects on the mammalian trachea. J.gen.Physiol., 43: 533–540.PubMedGoogle Scholar
  22. KRUEGER, A.P. and SMITH, R.F. (1960b): The biological effects of air ion action. II. Negative air ion effects on the concentration and metabolism of 5-hydroxytryptamine in the mammalian respiratory tract. J.gen.Physiol., 44: 269–276.PubMedGoogle Scholar
  23. KRUEGER, A.P., ANDRIESE, P.C. and KOTAKA, S. (1968): Small air ions: Their effect on blood levels of serotonin in terms of modern physical theory. Int.J.Biometeor., 12: 225–239.Google Scholar
  24. KRUEGER, A.P., KOTAKA, S. and REED, E.J. (1971): The course of experimental influenza in mice maintained in high concentrations of small negative air ions. Int.J.Biometeor., 15: 5–10.Google Scholar
  25. KRUEGER, A.P., KOTAKA, S., REED, E.J. and TURNER, S. (1970): The effect of air ions on bacterial and viral pneumonia in mice. Int.J.Biometeor., 14: 247–260.Google Scholar
  26. LOTMAR, R. (1972): Oxygen consumption of rat liver tissue in substrate solution treated with ionized air. Int. J. Biometeor. 16: 323–327.Google Scholar
  27. OLIVEREAU, J.M. (1971): Incidences psychophysiologiques de l'ionisation atmospherique. Dissertation University of Paris, 1–187.Google Scholar
  28. PALTI, Y., DeNOUR, E. and ABRAMOV, A. (1966): The effect of atmospheric ions on the respiratory system of infants. Pediatrics, 38: 405–411.PubMedGoogle Scholar
  29. PAVLIK, I. (1967): Fate of light air ions in the respiratory tract. Fysiat. Reum. Vestn., 45: 298–305. (Russian)Google Scholar
  30. SCHAEFER, K.E., LORD, G.P. and DOUGHERTY, J.H. (1969): Distribution of inhaled ions in the tracheobronchial tree of dogs. In: Biometeorology 4. S.W.Tromp and W.H.Weihe (ed.) Supplement to Vol.13 of Int.J.Biometeor. Part I. Swets & Zeitlinger, Amsterdam, p.139.Google Scholar
  31. SKOROBOGATOVA, A.M. (1964): On the role of the upper respiratory tract in an organism acted upon with ionized air. Doklady Akademii nauk. SSSR, 154: 1466–1468. (Russian)Google Scholar
  32. STUART, B.O. (1973): Deposition of inhaled aerosols. Arch. intern. Med., 131: 60–73.PubMedGoogle Scholar
  33. WELLS, W.F., RATCLIFFE, H.L. and CRUMB, C. (1948): On the mechanism of droplet - nucleus infection. II. Quantitative experimental airborne tuberculosis in rabbits. Amer. J.Hyg., 47: 11–20.Google Scholar
  34. WINSOR, T. and BECKETT, J.C. (1958): Biological effects of ionized air in man. Amer.J.phys.Med., 37: 83–89.PubMedGoogle Scholar
  35. NAVAL LABORATORY RESEARCH UNIT No 1 and LYONS, W.R. (1944): The inhalatory route for prophylaxis and treatment of experimental influenza. I. The distribution of inhaled material. Amer.J.Med.Sci., 207: 40–60.Google Scholar

Copyright information

© Swets & Zeitlinger B.V. 1974

Authors and Affiliations

  • A. P. Krueger
    • 1
  • E. J. Reed
  • M. B. Day
  • K. A. Brook
  1. 1.The Medical Microbiology and Immunology Division and the Naval Biomedical Research Laboratory of the School of Public HealthUniversity of CaliforniaBerkeleyUSA

Personalised recommendations