Skip to main content
Log in

A Kummer-type construction of self-dual 4-manifolds

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.


  1. Anderson, M.T.: Moduli spaces of Einstein metrics on 4-manifolds. Bull. Am. Math. Soc.21, 275–279 (1989)

    Google Scholar 

  2. Atiyah, M., Hitchin, N.J., Singer, I.M.: Self-duality in four dimensional Riemannian geometry. Proc. R. Soc. Lond. A362, 425–461 (1978)

    Google Scholar 

  3. Bailey, T.N., Singer, M.A.: Twistors, massless fields, and the Penrose transform. In: Twistors in mathematics and physics (Bailey and Baston, eds.). Lond. Math. Soc. Lect. Notes 156, 1990, pp. 299–338

  4. Baily, W.L.: The decomposition theorem forV-manifolds. Am. J. Math.78, 862–888 (1956)

    Google Scholar 

  5. Donaldson, S.K., Friedman, R.D.: Connected sums of self-dual manifolds and deformations of singular spaces. Nonlinearity2, 197–239 (1989)

    Google Scholar 

  6. Floer, A.: Self-dual conformal structures onlℂℙ2. J. Differ. Geom.33, 551–573 (1991)

    Google Scholar 

  7. Gibbons, G.W., Pope, C.N.: The positive action conjecture and asymptotically Euclidean metrics in quantum gravity. Commun. Math. Phys.66, 267–290 (1979)

    Google Scholar 

  8. Hitchin, N.J.: Polygons and gravitons. Math. Proc. Camb. Phil. Soc.83, 465–476 (1979)

    Google Scholar 

  9. Kuiper, H.N.: On conformally flat spaces in the large. Ann. Math.50, 916–924 (1949)

    Google Scholar 

  10. Kronheimer, P.B.: A Torelli-type theorem for gravitational instantons. J. Differ. Geom.29, 685–697 (1989)

    Google Scholar 

  11. LeBrun, C.R.: Scalar-flat Kähler metrics on blown-up ruled surfaces. J. Reine Angew. Math.420, 161–177 (1991)

    Google Scholar 

  12. LeBrun, C.R., Singer, M.A.: Existence and deformation theory for scalar-flat Kähler metrics on compact complex surfaces. Invent. Math.112, 273–313 (1993)

    Google Scholar 

  13. Penrose, R.: Non-linear gravitons and curved twistor theory. Gen. Rel. Grav.7, 31–52 (1976)

    Google Scholar 

  14. Ran, Z.: Deformations of maps. Lect. Notes Math.1389, 246–253 (1989)

    Google Scholar 

  15. Satake, I.: On a generalization of the notion of manifolds. Proc. Natl. Acad. Sci. USA42, 359–363 (1956)

    Google Scholar 

  16. Topiwala, P.: A new proof of the existence of Kähler-Einstein metrics on K3. Invent. Math.89, 425–448 (1987)

    Google Scholar 

  17. Taubes, C.H.: The existence of anti-self-dual metrics. J. Differ. Geom.36, 163–253 (1992)

    Google Scholar 

  18. Wall, C.T.C.: On simply connected 4-manifolds. J. Lond. Math. Soc.39, 141–149 (1964)

    Google Scholar 

  19. Yau, S.T.: On the Ricci-curvature of a complex Kähler manifold and the complex Monge-Ampère equations. Comment. Pure Appl. Math.31, 339–411 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Additional information

Supported in part by NSF grant DMS-9204093

Rights and permissions

Reprints and permissions

About this article

Cite this article

LeBrun, C., Singer, M. A Kummer-type construction of self-dual 4-manifolds. Math. Ann. 300, 165–180 (1994).

Download citation

  • Received:

  • Issue Date:

  • DOI:

Mathematics Subject Classification (1991)