Skip to main content
Log in

Optimal estuary aeration: An application of distributed parameter control theory

  • Published:
Applied Mathematics and Optimization Aims and scope Submit manuscript

Abstract

The use of artificial induced aeration has been suggested as a means for improving water quality. The task of controlling the aeration input rate to obtain maximum improvement with least cost is addressed as an optimization problem of a distributed parameter control system. A partial differential equation model for the dissolved oxygen balance in streams and estuaries is given, and a criterion functional is proposed in which the control can be found as the solution of an optimization problem in a Hilbert space. An analytic solution for the optimal feedback control of a stream aeration system is found, and a numerical algorithm for the estuary case is applied to an example using historical data from the Delaware estuary. The sensitivity of the control to system and input variations is discussed, and the dollar cost for the example is compared with costs for other suboptimal control schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. L. Alvarado andR. Mukundan, An optimization problem in distributed parameter systems,Int. J. of Control 9, No. 6 (1969), 665–677.

    Google Scholar 

  2. A. B. Arons andH. Stommel, A mixing length theory of tidal flushing,Trans. Am. Geophysical Un. 32 (1951), 419–421.

    Google Scholar 

  3. A. V. Balakrishnan,Introduction to Optimization Theory in a Hilbert Space Springer-Verlag, Berlin, 1971.

    Google Scholar 

  4. A. V. Balakrishnan, On a new computational method in optimal control theory,SIAM J. Control 6, No. 2 (1968), 149–173.

    Google Scholar 

  5. A. V. Balakrishnan, Optimal control problems in banach spaces,SIAM J. Control 3, No. 1 (1965), 152–180.

    Google Scholar 

  6. D. A. Bella andW. E. Dobbins, Difference modeling of stream pollution,J. SED, ASCE,94, No. SA5 (1968), 996–1016.

    Google Scholar 

  7. R. B. Bird, W. E. Stewart andE. N. Lightfoot,Transport Phenomena, John Wiley and Sons, New York, 1960.

    Google Scholar 

  8. K. R. Bowden, Circulation and diffusion, Estuaries,AAAS, Pub. No. 83 (1967), 15–36.

    Google Scholar 

  9. W. L. Brogan, Optimal control theory applied to systems described by partial differential equations,Advances in Control Systems: Theory and Applications,6, C. T. Leondes, Editor, Academic Press, New York (1968), 221–316.

    Google Scholar 

  10. A. G. Butkovsky,Distributed Control Systems, American Elsevier, New York, 1969.

    Google Scholar 

  11. A. G. Butkovsky, A. I. Egorov andK. A. Lurie, Optimal control of distributed parameter systems (A Survey of Soviet Publications),SIAM J. Control 6, No. 3 (1968), 437–476.

    Google Scholar 

  12. R. W. Carrol,Abstract Methods in Partial Differential Equations, Harper and Row, New York, 1969.

    Google Scholar 

  13. J. Crank,The Mathematics of Diffusion, Oxford University Press, London, 1956.

    Google Scholar 

  14. S. W. Custer andR. G. Krutchkoff, Stochastic model for BOD and DO in estuaries,J. SED, ASCE 95, No. SA5 (1969), 865–885.

    Google Scholar 

  15. B. Davidson andR. W. Bradshaw, A steady state optimal design of artificial induced aeration in polluted streams by the use of Pontryagin's maximum principle,Water Resources Research 6, No. 2 (1970), 383–397.

    Google Scholar 

  16. S. De Julio,Optimization of Linear Dynamic Systems, Ph.D. in Engineering, University of California, Los Angeles, 1968.

    Google Scholar 

  17. Delaware River Basin Commission. Final progress report, Delaware estuary and bay water quality sampling and mathematical modeling project,PB 193799, NTIS, 1970.

  18. A. M. Dresnack andW. E. Dobbins, Numerical analysis of BOD and DO profiles,J. SED, ASCE 94, No. SA5 (1968), 789–806.

    Google Scholar 

  19. H. Erzberger andM. Kim, Optimum boundary control of distributed parameters systems,Information and Control 9 (June 1966), 265–278.

    Google Scholar 

  20. Federal Water Pollution Control Administration,Delaware Estuary Comprehensive Study, Preliminary Report and Findings, U.S. Department of Interior, July 1966.

  21. H. B. Fisher,A Method for Predicting Pollutant Transport in Tidal Waters, Water Resources Center, Hydraulic Engineering Laboratory, University of California, Berkeley, Contribution No. 132, March 1970.

    Google Scholar 

  22. R. J. Frankel,Water Quality Management: An Engineering Economic Model for Domestic Waste Disposal, Ph.D. in Engineering, University of California, Berkeley, 1965.

    Google Scholar 

  23. D. R. F. Harleman, One dimensional models,Estuarine Modeling; An Assessment, U.S. Government Printing Office, Washington, DC, 1961, Water Pollution Control Research Series, 16070 DZV 02/71.

    Google Scholar 

  24. William T. Hogan, F. E. Reed andA. W. Starbird,Optimal Mechanical Aeration Systems for Rivers and Ponds, Water Pollution Control Research Series 16080 D00 7/70, U.S. Government Printing Office, Washington, DC, July 1970.

    Google Scholar 

  25. E. R. Holley andD. R. F. Harleman,Dispersion of Pollutants in Estuary Type Flow, Hydrodynamics Laboratory, Massachusetts Institute of Technology, 1965.

  26. T. E. Hoover andR. A. Arnoldi, Computer model of Connecticut river pollution,J. Water Pollution Control Fed.,42, No. 2, Part 2 (February 1970), R67-R75.

    Google Scholar 

  27. W. E. Hullett,Application of Distributed Parameter Control Theory to Optimal Estuary Aeration, Ph.D. in Engineering, University of California, Los Angeles, 1972.

    Google Scholar 

  28. L. Johnsson,Distributed Parameter Systems, An Annotated Bibliography to April 1971, University of California, Los Angeles, UCLA-ENG-7143, 1972.

    Google Scholar 

  29. R. Kent, Diffusion in a sectionally homogeneous estuary,J. SED, ASCE 86, No. SA2 (1960), 15–47.

    Google Scholar 

  30. B. H. Ketchum, Hydrographic factors involved in the dispersion of pollutants introduced into tidal waters,J. Boston Society of Civil Engineers 37 (1950), 296–314.

    Google Scholar 

  31. M. Kim andH. Erzberger, On the design of optimum distributed parameter systems with boundary control function,IEEE Trans. Auto. Control,AC-12, No. 1 (February 1967), 22–28.

    Google Scholar 

  32. M. Kim andS. H. Gajwa'ni, A variational approach to optimum distributed parameter systems,IEEE Trans. Auto. Control AC-13, No. 2 (April 1968), 191–193.

    Google Scholar 

  33. L. B. Koppel andY. P. Shih, Optimal control of a class of distributed parameter systems with distributed controls,I & EC Fundamentals 7, No. 3 (1968), 414–422.

    Google Scholar 

  34. G. L. Kusic, Implementing the solution to continuous optimal control of distributed parameter systems,Proc. Asilomar Conference on Circuits and Systems, Monterey, California, October, 1967, 485–495.

  35. P. D. Lax andR. D. Richtmyer, Survey of the stability of linear finite difference equations,Comm. Pure Applied Mathematics 9 (1956), 267–293.

    Google Scholar 

  36. Jan Leendertse,Water Quality Simulation Model for Well-Mixed Estuaries and Coastal Seas, Rand Corporation, Santa Monica, California, RM 6230 (Principles of Computation), R-708 (Computation Procedures), R-709 (Jamaica Bay Simulations), 1969.

    Google Scholar 

  37. Wen-Hsuing Li, Unsteady dissolved-oxygen sag in a stream,J. SED, ASCE 88, No. SA3, (1962), 75–85.

    Google Scholar 

  38. J. L. Lions,Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, Berlin, 1971.

    Google Scholar 

  39. J. L. Lions,Control Optimal de Systems Gourvenes par des Equations aux Derivees Partielles, Dunod and Gauthier-Villars, Paris, 1968.

    Google Scholar 

  40. A. D. Lowan,The Operator Approach to Problems of Stability and Convergence, Scripta Mathematica, New York, 1957.

    Google Scholar 

  41. S. G. Mikhlin (Editor),Linear Equations of Mathematical Physics, Holt, Rinehart and Winston, New York, 1967.

    Google Scholar 

  42. S. K. Mukherjee,Economic Evaluation of Water Quality, Sanitary Engineering Research Laboratory, University of California, Berkeley, 4th Annual Report, 1969.

    Google Scholar 

  43. D. J. O'Connor, J. P. St. John andD. M. DiToro, Water quality analysis of the Delaware River Estuary,J. SED, ASCE 94, No. SA6, December 1968.

  44. D. J. O'Connor, The temporal and spatial distribution of dissolved oxygen in streams,Water Resources Research 3, No. 1 (1967), 65–81.

    Google Scholar 

  45. D. J. O'Connor, Estuarine distribution of non-conservative substances,J. SED, ASCE 91, No. SA1 (February 1965), 23–42.

    Google Scholar 

  46. D. J. O'Connor, Oxygen balance of an estuary,Trans. ASCE 126, Pt. III (1961), 556–611.

    Google Scholar 

  47. Akira Okubo, Equations describing the diffusion of an introduced pollutant in a one-dimensional estuary,Studies on Oceanography, University of Tokyo Press, Tokyo (1964), 216–226.

    Google Scholar 

  48. G. D. Pence, J. M. Jeglic andR. V. Thomann, Time-varying dissolved oxygen model,J. SED, ASCE (April 1968), 381–402.

  49. S. S. Prabhu andI. McCausland, Optimal control of linear diffusion processes with quadratic error criteria,IFAC Symposium on the Control of Distributed Systems, Banff, Canada, June 1971 (Paper 9-2).

  50. G. Prado,Observability, Estimation and Control of Distributed Parameter Systems, Engineering Systems Laboratory, Massachusetts Institute of Technology, Cambridge, ESL-R-457, 1971.

    Google Scholar 

  51. D. W. Pritchard, The equations of mass continuity and salt continuity in estuaries,J. Marine Res. 17 (1958), 412–423.

    Google Scholar 

  52. O. Reynolds, On the dynamical theory of incompressible viscous fluids and the determination of the criterion,Phil. Trans. Roy. Soc. A,186, No. 123, 1894.

  53. R. D. Richtmyer andK. W. Morton,Difference Methods for Initial Value Problems, John Wiley and Sons, New York, 1967.

    Google Scholar 

  54. A. C. Robinson,A Survey of Optimal Control of Distributed Parameter Systems, Aerospace Research Laboratory, ARL 69-0177 (AD 701–732), 1969.

  55. A. P. Sage,Optimum Systems Control, Prentice Hall, Englewood Cliffs, New Jersey, 1968.

    Google Scholar 

  56. A. P. Sage andS. P. Chadhuri, Discretization schemes and the optimal control of distributed parameter systems,Proc. Asilomar Conference on Circuit and Systems, Monterey, California (October 1967), 191–200.

  57. L. Schwartz,Theorie des Distributions, t. 1, Hermann, Paris, 1950.

    Google Scholar 

  58. K. Shinohara,et al., Numerical analysis of the salinity intrusion of a tidal estuary of the well-mixed type,Proc. 13th Congress of the International Association for Hydraulic Research 3 (1969), 165–172.

    Google Scholar 

  59. G. D. Smith,Numerical Solution of Partial Differential Equations, Oxford University Press, London, 1965.

    Google Scholar 

  60. R. Smith,Cost of Conventional and Advanced Treatment of Waste Waters, Cincinnati Water Research Laboratory, Federal Water Pollution Control Administration, July 1968.

  61. H. W. Streeter andE. B. Phelps,A Study of the Pollution and Natural Purification of the Ohio River, U.S. Department of Health, Education and Welfare, Washington, DC, Public Health Service, Pub. 146, 1925.

    Google Scholar 

  62. H. Strommel, Computation of pollution in a vertically mixed estuary,Sewage and Industrial Waste 25, No. 9 (September 1953), 1065–1071.

    Google Scholar 

  63. V. S. Tarrasov, H. J. Perlis andB. Davidson, Optimization of a class of river aeration problems by the use of multivariable distributed parameter control theory,Water Resources Research 5, No. 3 (1969), 563–573.

    Google Scholar 

  64. V. J. Tarrasov,Optimization of Multivariable Distributed Parameter Systems, Ph.D. in Chemical Engineering, Rutgers University, New Brunswick, New Jersey, 1968.

    Google Scholar 

  65. R. V. Thomann,Systems Analysis and Water Quality Management, Environmental Research and Applications, New York, 1971.

    Google Scholar 

  66. R. V. Thomann, Mathematical model for dissolved oxygen,J. SED, ASCE 89, SA5, October 1963.

  67. R. V. Thomann,The Use of Systems Analysis to Describe the Time Variation of Dissolved Oxygen in a Tidal Stream, Ph.D. Dissertation, New York University, New York, 1963.

    Google Scholar 

  68. R. Tortoriello, Private Communication, August 1972.

  69. Tracor, Inc., Estuarine modeling: an assessment,Water Pollution Control Research Series 16070 DVZ 02/71, U.S. Government Printing Office, Washington, DC, 1971.

    Google Scholar 

  70. P. K. C. Wang, Theory of stability and control for distributed parameter systems (a bibliography),Int. J. Control 7, No. 2 (1968), 101–116.

    Google Scholar 

  71. P. K. C. Wang, Control of distributed parameter systems,Advances in Control Systems: Theory and Applications 1, C. T. Leondes, Editor, Academic Press (1964), 75–172.

  72. William Whipple,et al.,Oxygen Regeneration of Polluted Rivers, Environmental Protection Agency, Water Quality Office, Washington, DC, 16080 DUP 12/70, December 1970.

    Google Scholar 

  73. William Whipple,et al.,Instream Aeration of Polluted Rivers, Water Resources Research Institute, Rutgers University, New Brunswick, New Jersey, August 1969.

    Google Scholar 

  74. D. M. Wiberg, Feedback control of linear distributed systems,J. Basic Engr., ASME Trans. Series D, No. 89 (June 1967), 379–384.

    Google Scholar 

  75. N. A. Young, W. G. Yeh andG. W. Tauxe,Optimal Identification of Estuary Parameters Using Quasilinearization, Seventh American Water Resources Conference, Washington, DC, October 25–29, 1971.

    Google Scholar 

  76. S. L. Yu, Aerator performance in natural streams,J. SED, ASCE 96, SA5 (October 1970), 1099–1114.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The research described in this paper is based on the author's doctoral dissertation, prepared under the supervision of Prof. A. V. Balakrishnan at the University of California, Los Angeles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hullett, W. Optimal estuary aeration: An application of distributed parameter control theory. Appl Math Optim 1, 20–63 (1974). https://doi.org/10.1007/BF01449023

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01449023

Keywords

Navigation