Skip to main content
Log in

Hyperbolic equations with Dirichlet boundary feedback via position vector: Regularity and almost periodic stabilization—Part I

  • Published:
Applied Mathematics and Optimization Aims and scope Submit manuscript

Abstract

A hyperbolic equation defined on a bounded domain is considered, with input acting in theDirichlet boundary condition and expressed as a specifiedfeedback of theposition vector only. Two main results are established. First, we prove a well-posedness and regularity result of the feedback solutions. Second, we specialize our equation to the case when the original differential operator withzero boundary conditions is self-adjoint and unstable. Here, under certain natural algebraic conditions based on the finitely many unstable eigenvalues, we establish the existence ofboundary vectors, for which the corresponding feedback solutions have the same desirablestructural property of astable free system: They can be expressed as an infinite linear combination of sines and cosines (special case of almost periodicity). A cosine operator approach is employed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References—Part I

  1. P. J. Antsaklis and W. A. Wolovich, Aribtrary pole placement using linear output feedback compensation,Intern. J. Control, 25:6, 915–925 (1977).

    Google Scholar 

  2. P. Butzer and R. Nessel,Fourier Analysis and Approximations, Vol. 1, Academic Press, New York, 1971.

    Google Scholar 

  3. G. DaPrato and E. Giusti, Una caratterizzazione dei generatori de funzioni conseno astratte,Bollettino Unione Metematica Italiana 22, 357–362 (1967).

    Google Scholar 

  4. E. J. Davison and S. H. Wang, On pole assignment in linear multi-variable systems using output feedback,IEEE Transactions on Automatic Control AC-20, 516–518 (August 1975).

  5. G. Doetsch,Introduction to the Theory and Application of the Laplace Transform, Springer-Verlag, New York, 1979.

    Google Scholar 

  6. N. Dunford and J. Schwartz,Linear Operators, Vols. I, II, III, Interscience, John Wiley, New York, 1958, 1963, 1971.

    Google Scholar 

  7. H. Fattorini, Ordinary differential equations in linear topological spaces, pts. I & II,J. Differ. Eq., 5, 72–105 (1968) and 6, 50–70 (1969).

    Google Scholar 

  8. H. O. Fattorini, Un Teorema de perturbacion para generatores de funciones coseno,Revista de la Union Matematica Argentina, 25, 199–211 (1971).

    Google Scholar 

  9. D. Fujiwara, Concrete characterization of the domains of fractional powers of some elliptic differential operators of the second order,Proc. Japan Acad., 43, 82–86 (1967).

    Google Scholar 

  10. E. Hille and R. S. Phillips,Functional Analysis and Semigroups, Am. Math. Soc. Colloq. Publns., XXXI, Providence, R. I. (1957).

  11. T. Kato, Fractional powers of dissipative operators,J. Math. Soc. Japan, 14:2, 241–248 (1961).

    Google Scholar 

  12. T. Kato,Perturbation Theory of Linear Operators, Springer-Verlag, New York, 1966.

    Google Scholar 

  13. H. Kimura, Pole assignment by gain output feedback,IEEE Transactions on Automatic Control, AC-20, 509–516 (August 1975).

  14. V. A. Kondratiev, Boundary problems for elliptic equations in domains with conical or angular points,Transl. Moscow Math. Soc., 16, 1967.

  15. I. Lasiecka, Unified theory for abstract parabolic boundary problems: A semigroup approach,Appl. Math. Optim., 6:4, 281–333 (1980).

    Google Scholar 

  16. I. Lasiecka and R. Triggiani, A cosine operator approach to modelingL 2 (O, T;L 2(Γ)) boundary input hyperbolic equations,Appl. Math. Optim., 7:1, 35–93 (1981).

    Google Scholar 

  17. I. Lasiecka and R. Triggiani, Parabolic equations with boundary feedback via Dirichlet trace: The feedback semigroup, submitted.

  18. J. L. Lions, Espaces d'interpolation et domaines de puissance fractionnaires d'operators,J. Math. Soc. Japan, 14:2, 233–241 (1962).

    Google Scholar 

  19. J. L. Lions and E. Magenes, Problème aux limites non homogènes, IV,Ann. Scuola Normale Sup. Pisa, 15, 311–325 (1961).

    Google Scholar 

  20. J. L. Lions and E. Magenes,Non-Homogeneous Boundary Value Problems and Applications, Vols. I & II, Springer-Verlag, New York, 1972.

    Google Scholar 

  21. J. Necas,Les methodes directes en theorie des equations elliptiques, Masson et Cie Editeurs, Paris, 1967.

    Google Scholar 

  22. G. Petiau,La théorie des fonctions de Bessel, Reseignements et Vente en service des Publications du CNRS-45, Paris, 1955.

  23. J. Quinn and D. Russell, Asymptotic stability and energy decay rates for solutions of hyperbolic equations with damping,proc. Royal Soc. Edinburgh 77A, 97–127 (1977).

    Google Scholar 

  24. G. Schmidt and N. Weck, On the boundary behavior of solutions to elliptic and parabolic equations,SIAM J. Control Optim., 16, 533–598 (1978).

    Google Scholar 

  25. M. Slemrod, Stabilization of boundary control systems,J. Differ. Eq.

  26. M. Sova, Cosine operator functions,Rozprawy Mat. XLIX, 3–46 (1966).

    Google Scholar 

  27. H. Triebel,Interpolation Theory, Function Spaces, Differential Operators, VEB Dentscher Verlag der Wissenchafter: Berlin, 1978.

    Google Scholar 

  28. R. Triggiani, On the stability problem in Banach space,J. Math. Anal. Appl., 52, 383–403 (1975); Addendum,id. 56 (1976).

    Google Scholar 

  29. R. Triggiani, A cosine operator approach to modeling boundary input hyperbolic equations, Proc. IFIP Conference, held at the University of Wurzburg, Sept. 5–9, 1977, in:Lecture Notes in Control and Information Sciences, Springer-Verlag, New York.

    Google Scholar 

  30. R. Triggiani, Boundary feedback stabilizability of parabolic equations,Appl. Math. Optim., 6:3, 201–220 (1980).

    Google Scholar 

  31. R. Triggiani, Well posedness and regularity of boundary feedback parabolic systems,J. Differ. Eq., 36:3, 347–362 (1980).

    Google Scholar 

  32. D. C. Washburn, A bound on the boundary input map for parabolic equations with application to time optimal control,SIAM J. Control Optim., 17, 652–671 (1979), based on a Ph.D. thesis at the University of California, Los Angeles, 1974.

    Google Scholar 

  33. W. Wonham, On pole assignment in multi-input controllable linear systems,IEEE Transactions on Automatic Control, AC-12, No. 6, 660–665 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. V. Balakrishnan

This research was supported in part by the Air Force Office of Scientific Research under Grant AFOSR-78-3350 (I.L.) and Grant AFOSR-77-3338 (R.T.) through ISU.

This research was performed while the author was visiting the Department of Systems Science, University of California, Los Angeles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lasiecka, I., Triggiani, R. Hyperbolic equations with Dirichlet boundary feedback via position vector: Regularity and almost periodic stabilization—Part I. Appl Math Optim 8, 1–37 (1982). https://doi.org/10.1007/BF01447749

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01447749

Keywords

Navigation