On the space-filling octahedra

Abstract

A space-filling polyhedron is one whose replications can be packed to fill three-space completely. The space-filling tetrahedra, pentahedra, hexahedra and heptahedra have been previously investigated. The search is here extended to the convex space-filling octahedra. The number of types is found to be at least 49.

This is a preview of subscription content, log in to check access.

Bibliography

  1. 1.

    Federico, P.J., ‘Polyhedra with 4 to 8 Faces’,Geom. Ded. 3, 468–481 (1975).

    Google Scholar 

  2. 2.

    Federico, P.J., ‘The Number of Polyhedra’,Philips Res. Repts 30, 220–231 (1975).

    Google Scholar 

  3. 3.

    Goldberg, M., ‘Three Infinite Families of Tetrahedral Space-fillers’,J. Comb. Theory 16, 348–354 (1974).

    Google Scholar 

  4. 4.

    Goldberg, M., ‘The Space-filling Pentahedra’,J. Comb. Theory 13, 437–443 (1972);17, 375–378 (1974).

    Google Scholar 

  5. 5.

    Goldberg, M., ‘Several New Space-filling Polyhedra’,Geom. Ded. 5, 517–523 (1976).

    Google Scholar 

  6. 6.

    Goldberg, M., ‘On the Space-filling Hexahedra’,Geom. Ded. 6, 99–108 (1977).

    Google Scholar 

  7. 7.

    Goldberg, M., ‘On the Space-filling Heptahedra’,Geom. Ded. 7, 175–184 (1978).

    Google Scholar 

  8. 8.

    Hancock, H.,Development of the Minkowski Geometry of Numbers, Vol. 2, 1939, pp. 740–741.

    Google Scholar 

  9. 9.

    Kershner, R.B., ‘On Paving the Plane’,Am. Math. Monthly 75, 839–844 (1968).

    Google Scholar 

  10. 10.

    Minkowski, H.,Gesammelte Abhandlungen, Vol. 1, p. 354.

  11. 11.

    Stein, S.K., ‘A Symmetric Body that Tiles but not as a Lattice’,Proc. Am. Math. Soc. 36, 543–548 (1972).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Goldberg, M. On the space-filling octahedra. Geom Dedicata 10, 323–335 (1981). https://doi.org/10.1007/BF01447431

Download citation