Advertisement

Geometriae Dedicata

, Volume 10, Issue 1–4, pp 323–335 | Cite as

On the space-filling octahedra

  • Michael Goldberg
Article

Abstract

A space-filling polyhedron is one whose replications can be packed to fill three-space completely. The space-filling tetrahedra, pentahedra, hexahedra and heptahedra have been previously investigated. The search is here extended to the convex space-filling octahedra. The number of types is found to be at least 49.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    Federico, P.J., ‘Polyhedra with 4 to 8 Faces’,Geom. Ded. 3, 468–481 (1975).Google Scholar
  2. 2.
    Federico, P.J., ‘The Number of Polyhedra’,Philips Res. Repts 30, 220–231 (1975).Google Scholar
  3. 3.
    Goldberg, M., ‘Three Infinite Families of Tetrahedral Space-fillers’,J. Comb. Theory 16, 348–354 (1974).Google Scholar
  4. 4.
    Goldberg, M., ‘The Space-filling Pentahedra’,J. Comb. Theory 13, 437–443 (1972);17, 375–378 (1974).Google Scholar
  5. 5.
    Goldberg, M., ‘Several New Space-filling Polyhedra’,Geom. Ded. 5, 517–523 (1976).Google Scholar
  6. 6.
    Goldberg, M., ‘On the Space-filling Hexahedra’,Geom. Ded. 6, 99–108 (1977).Google Scholar
  7. 7.
    Goldberg, M., ‘On the Space-filling Heptahedra’,Geom. Ded. 7, 175–184 (1978).Google Scholar
  8. 8.
    Hancock, H.,Development of the Minkowski Geometry of Numbers, Vol. 2, 1939, pp. 740–741.Google Scholar
  9. 9.
    Kershner, R.B., ‘On Paving the Plane’,Am. Math. Monthly 75, 839–844 (1968).Google Scholar
  10. 10.
    Minkowski, H.,Gesammelte Abhandlungen, Vol. 1, p. 354.Google Scholar
  11. 11.
    Stein, S.K., ‘A Symmetric Body that Tiles but not as a Lattice’,Proc. Am. Math. Soc. 36, 543–548 (1972).Google Scholar

Copyright information

© D. Reidel Publishing Co. 1981

Authors and Affiliations

  • Michael Goldberg
    • 1
  1. 1.N.W., Washington, D.C.USA

Personalised recommendations