Skip to main content
Log in

Complex cobordism ring and conformal field theory over Z

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • [A] Adams, J.F.: Stable homotopy and generalized homology. Chicago Lectures in Math. Chicago: Univ. Chicago Press 1974

    Google Scholar 

  • [BeSc] Beilinson, A.A., Schechtman, V.A.: Determinant bundles and Virasoro algebras. Commun. Math. Phys.118, 651–701 (1988)

    Google Scholar 

  • [BuSh] Bukshtaber, V.M., Shokurov, A.V.: The Landweber-Novikov algebra and formal vector fields on the line. Funct. Anal. Appl.12, 159–168 (1978)

    Google Scholar 

  • [DJKM] Date, E., Jimbo, M., Kashiwara, M., Miwa, T.: Transformation groups for soliton equations. In: Jimbo, M., Miwa, T., (eds.) Proceedings of RIMS Symposium Non-linear integrable systems — classical theory and quantum theory. Kyoto, pp. 39–119, Singapore: World Scientific 1983

    Google Scholar 

  • [Haz] Hazewinkel, M.: Formal groups and applications. Boston Orlando: Academic Press 1978

    Google Scholar 

  • [Hir1] Hirzebruch, F.: Topological methods in algebraic geometry, 3rd edn. Berlin Heidelberg New York: Springer 1966

    Google Scholar 

  • [Hir2] Hirzebruch, F.: Elliptic genera of levelN for complex manifolds. Preprint MPI/88-24

  • [KSU1] Katsura, T., Shimizu, Y., Ueno, K.: New bosonization and conformal field theory over Z. Commun. Math. Phys.121, 603–622 (1988)

    Google Scholar 

  • [KSU2] Katsura, T., Shimizu, Y., Ueno, K.: Formal groups and conformal field theory overZ. Adv. Stud. Pure Math.19, 347–366 (1989)

    Google Scholar 

  • [KNTY] Kawamoto, N., Namikawa, Y., Tsuchiya, A., Yamada, Y.: Geometric realization of conformal field theory on Riemann surfaces. Commun. Math. Phys.116, 247–308 (1988)

    Google Scholar 

  • [Kr] Krichever, I.M.: Generalized elliptic genera and Baker-Akhiezer functions. Preprint 1989

  • [La] Landweber, P., (ed.): Elliptic curves and modular forms in algebraic topology (Lecture Notes in Math., Vol. 1326). Berlin Heidelberg New York: Springer 1988

    Google Scholar 

  • [La2] Landweber, P.S.: Associated prime ideals and Hopf algebras. J. Pure Appl. Algebra3, 43–58 (1973)

    Google Scholar 

  • [Li] Littlewood, D.E.: The theory of group characters and matrix representation of groups. Oxford: Oxford University Press 1950

    Google Scholar 

  • [MiSt] Milnor, J.W., Stasheff, J.D.: Characteristic classes. Ann. Math. Stud.76 (1974)

  • [Mo] Morava, J.: On the complex cobordism ring as a Fock representation. In: Mimura, M. (ed.) Homotopy theory and related topics. Proceedings, Kinosaki 1987 (Lecture Notes Math. Vol. 1418, pp. 184–204) Berlin Heidelberg New York: Springer 1988

    Google Scholar 

  • [MoSh] Morava, J., Shimizu, Y.: A topological generalization of the elliptic genus. Preprint 1990

  • [S] Sato, M.: Soliton equations as dynamical systems on an infinite dimensional Grassmann manifold. Sūriken-Kōkyūroku439, 30–46 (1981)

    Google Scholar 

  • [SM] Sato, M.: Lectures on KP equations (in Japanese). Notes by Mulase, M.

  • [SN] Sato, M., Noumi, M.: Soliton equations and universal Grassmann manifold. Sophia Univ. Kōkyūroku in Math.18 (1984)

  • [Sh] Shiota, T.: Characterization of Jacobian varieties in terms of soliton equations. Invent. Math.83, 333–382 (1986)

    Google Scholar 

  • [T] Tamanoi, H.: Hyperelliptic genera. Thesis, The Johns Hopkins Univ. 1987

  • [TK] Tsuchiya, A., Kanie, Y.: Fock space representation of the Virasoro algebra —Intertwining operators. Publ. RIMS Kyoto Univ.22, 259–327 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Partially supported by Max-Planck-Institut für Mathematik

Partially supported by Grant-in-Aid, Ministry of Education of Japan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katsura, T., Shimizu, Y. & Ueno, K. Complex cobordism ring and conformal field theory over Z. Math. Ann. 291, 551–571 (1991). https://doi.org/10.1007/BF01445226

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01445226

Keywords

Navigation