Advertisement

Mathematische Annalen

, Volume 291, Issue 1, pp 551–571 | Cite as

Complex cobordism ring and conformal field theory over Z

  • Toshiyuki Katsura
  • Yuji Shimizu
  • Kenji Ueno
Article

Keywords

Field Theory Conformal Field Theory Cobordism Ring Complex Cobordism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A] Adams, J.F.: Stable homotopy and generalized homology. Chicago Lectures in Math. Chicago: Univ. Chicago Press 1974Google Scholar
  2. [BeSc] Beilinson, A.A., Schechtman, V.A.: Determinant bundles and Virasoro algebras. Commun. Math. Phys.118, 651–701 (1988)Google Scholar
  3. [BuSh] Bukshtaber, V.M., Shokurov, A.V.: The Landweber-Novikov algebra and formal vector fields on the line. Funct. Anal. Appl.12, 159–168 (1978)Google Scholar
  4. [DJKM] Date, E., Jimbo, M., Kashiwara, M., Miwa, T.: Transformation groups for soliton equations. In: Jimbo, M., Miwa, T., (eds.) Proceedings of RIMS Symposium Non-linear integrable systems — classical theory and quantum theory. Kyoto, pp. 39–119, Singapore: World Scientific 1983Google Scholar
  5. [Haz] Hazewinkel, M.: Formal groups and applications. Boston Orlando: Academic Press 1978Google Scholar
  6. [Hir1] Hirzebruch, F.: Topological methods in algebraic geometry, 3rd edn. Berlin Heidelberg New York: Springer 1966Google Scholar
  7. [Hir2] Hirzebruch, F.: Elliptic genera of levelN for complex manifolds. Preprint MPI/88-24Google Scholar
  8. [KSU1] Katsura, T., Shimizu, Y., Ueno, K.: New bosonization and conformal field theory over Z. Commun. Math. Phys.121, 603–622 (1988)Google Scholar
  9. [KSU2] Katsura, T., Shimizu, Y., Ueno, K.: Formal groups and conformal field theory overZ. Adv. Stud. Pure Math.19, 347–366 (1989)Google Scholar
  10. [KNTY] Kawamoto, N., Namikawa, Y., Tsuchiya, A., Yamada, Y.: Geometric realization of conformal field theory on Riemann surfaces. Commun. Math. Phys.116, 247–308 (1988)Google Scholar
  11. [Kr] Krichever, I.M.: Generalized elliptic genera and Baker-Akhiezer functions. Preprint 1989Google Scholar
  12. [La] Landweber, P., (ed.): Elliptic curves and modular forms in algebraic topology (Lecture Notes in Math., Vol. 1326). Berlin Heidelberg New York: Springer 1988Google Scholar
  13. [La2] Landweber, P.S.: Associated prime ideals and Hopf algebras. J. Pure Appl. Algebra3, 43–58 (1973)Google Scholar
  14. [Li] Littlewood, D.E.: The theory of group characters and matrix representation of groups. Oxford: Oxford University Press 1950Google Scholar
  15. [MiSt] Milnor, J.W., Stasheff, J.D.: Characteristic classes. Ann. Math. Stud.76 (1974)Google Scholar
  16. [Mo] Morava, J.: On the complex cobordism ring as a Fock representation. In: Mimura, M. (ed.) Homotopy theory and related topics. Proceedings, Kinosaki 1987 (Lecture Notes Math. Vol. 1418, pp. 184–204) Berlin Heidelberg New York: Springer 1988Google Scholar
  17. [MoSh] Morava, J., Shimizu, Y.: A topological generalization of the elliptic genus. Preprint 1990Google Scholar
  18. [S] Sato, M.: Soliton equations as dynamical systems on an infinite dimensional Grassmann manifold. Sūriken-Kōkyūroku439, 30–46 (1981)Google Scholar
  19. [SM] Sato, M.: Lectures on KP equations (in Japanese). Notes by Mulase, M.Google Scholar
  20. [SN] Sato, M., Noumi, M.: Soliton equations and universal Grassmann manifold. Sophia Univ. Kōkyūroku in Math.18 (1984)Google Scholar
  21. [Sh] Shiota, T.: Characterization of Jacobian varieties in terms of soliton equations. Invent. Math.83, 333–382 (1986)Google Scholar
  22. [T] Tamanoi, H.: Hyperelliptic genera. Thesis, The Johns Hopkins Univ. 1987Google Scholar
  23. [TK] Tsuchiya, A., Kanie, Y.: Fock space representation of the Virasoro algebra —Intertwining operators. Publ. RIMS Kyoto Univ.22, 259–327 (1986)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Toshiyuki Katsura
    • 1
  • Yuji Shimizu
    • 2
  • Kenji Ueno
    • 3
  1. 1.Department of Mathematics, Faculty of ScienceOchanomizu UniversityTokyoJapan
  2. 2.Mathematical Institute, Faculty of ScienceTohoku UniversitySendaiJapan
  3. 3.Department of Mathematics, Faculty of ScienceKyoto UniversityKyotoJapan

Personalised recommendations