Complex cobordism ring and conformal field theory over Z
Article
- 142 Downloads
- 9 Citations
Keywords
Field Theory Conformal Field Theory Cobordism Ring Complex Cobordism
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- [A] Adams, J.F.: Stable homotopy and generalized homology. Chicago Lectures in Math. Chicago: Univ. Chicago Press 1974Google Scholar
- [BeSc] Beilinson, A.A., Schechtman, V.A.: Determinant bundles and Virasoro algebras. Commun. Math. Phys.118, 651–701 (1988)Google Scholar
- [BuSh] Bukshtaber, V.M., Shokurov, A.V.: The Landweber-Novikov algebra and formal vector fields on the line. Funct. Anal. Appl.12, 159–168 (1978)Google Scholar
- [DJKM] Date, E., Jimbo, M., Kashiwara, M., Miwa, T.: Transformation groups for soliton equations. In: Jimbo, M., Miwa, T., (eds.) Proceedings of RIMS Symposium Non-linear integrable systems — classical theory and quantum theory. Kyoto, pp. 39–119, Singapore: World Scientific 1983Google Scholar
- [Haz] Hazewinkel, M.: Formal groups and applications. Boston Orlando: Academic Press 1978Google Scholar
- [Hir1] Hirzebruch, F.: Topological methods in algebraic geometry, 3rd edn. Berlin Heidelberg New York: Springer 1966Google Scholar
- [Hir2] Hirzebruch, F.: Elliptic genera of levelN for complex manifolds. Preprint MPI/88-24Google Scholar
- [KSU1] Katsura, T., Shimizu, Y., Ueno, K.: New bosonization and conformal field theory over Z. Commun. Math. Phys.121, 603–622 (1988)Google Scholar
- [KSU2] Katsura, T., Shimizu, Y., Ueno, K.: Formal groups and conformal field theory overZ. Adv. Stud. Pure Math.19, 347–366 (1989)Google Scholar
- [KNTY] Kawamoto, N., Namikawa, Y., Tsuchiya, A., Yamada, Y.: Geometric realization of conformal field theory on Riemann surfaces. Commun. Math. Phys.116, 247–308 (1988)Google Scholar
- [Kr] Krichever, I.M.: Generalized elliptic genera and Baker-Akhiezer functions. Preprint 1989Google Scholar
- [La] Landweber, P., (ed.): Elliptic curves and modular forms in algebraic topology (Lecture Notes in Math., Vol. 1326). Berlin Heidelberg New York: Springer 1988Google Scholar
- [La2] Landweber, P.S.: Associated prime ideals and Hopf algebras. J. Pure Appl. Algebra3, 43–58 (1973)Google Scholar
- [Li] Littlewood, D.E.: The theory of group characters and matrix representation of groups. Oxford: Oxford University Press 1950Google Scholar
- [MiSt] Milnor, J.W., Stasheff, J.D.: Characteristic classes. Ann. Math. Stud.76 (1974)Google Scholar
- [Mo] Morava, J.: On the complex cobordism ring as a Fock representation. In: Mimura, M. (ed.) Homotopy theory and related topics. Proceedings, Kinosaki 1987 (Lecture Notes Math. Vol. 1418, pp. 184–204) Berlin Heidelberg New York: Springer 1988Google Scholar
- [MoSh] Morava, J., Shimizu, Y.: A topological generalization of the elliptic genus. Preprint 1990Google Scholar
- [S] Sato, M.: Soliton equations as dynamical systems on an infinite dimensional Grassmann manifold. Sūriken-Kōkyūroku439, 30–46 (1981)Google Scholar
- [SM] Sato, M.: Lectures on KP equations (in Japanese). Notes by Mulase, M.Google Scholar
- [SN] Sato, M., Noumi, M.: Soliton equations and universal Grassmann manifold. Sophia Univ. Kōkyūroku in Math.18 (1984)Google Scholar
- [Sh] Shiota, T.: Characterization of Jacobian varieties in terms of soliton equations. Invent. Math.83, 333–382 (1986)Google Scholar
- [T] Tamanoi, H.: Hyperelliptic genera. Thesis, The Johns Hopkins Univ. 1987Google Scholar
- [TK] Tsuchiya, A., Kanie, Y.: Fock space representation of the Virasoro algebra —Intertwining operators. Publ. RIMS Kyoto Univ.22, 259–327 (1986)Google Scholar
Copyright information
© Springer-Verlag 1991