Mathematische Annalen

, Volume 296, Issue 1, pp 179–190 | Cite as

A finiteness property an an automatic structure for Coxeter groups

  • Brigitte Brink
  • Robert B. Howlett


Coxeter Group Finiteness Property Automatic Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bourbaki, N.: Groupes et Algèbres de Lie, Chap. 4, 5, 6. Hermann, Paris, 1968Google Scholar
  2. 2.
    Cannon, J.W., Epstein, D.B., Holt, D.F., Paterson, M.S., Thurston, W.P.: Word Processing and Group Theory. University of Minnesota Supercomputer Institute (1991) (preprint)Google Scholar
  3. 3.
    Davis, M.W., Shapiro, M.D.: Coxeter groups are automatic. Ohio State University (1991) (preprint)Google Scholar
  4. 4.
    Dyer, M.J.: Hecke algebras and reflections in Coxeter groups. PhD thesis, University of Sydney, 1987Google Scholar
  5. 5.
    Gersten, S.M., Short, H.B.: Small cancellation theory and automatic groups. Invent. Math.102 (1990) 305–334Google Scholar
  6. 6.
    Hiller, H.: Geometry of Coxeter Groups. Pitman Advanced Publishing Program, 1981Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Brigitte Brink
    • 1
  • Robert B. Howlett
    • 1
  1. 1.School of Mathematics and StatisticsUniversity of SydneyAustralia

Personalised recommendations