Advertisement

Mathematische Annalen

, Volume 302, Issue 1, pp 417–432 | Cite as

Bounds on degrees of projective schemes

  • Bernd Sturmfels
  • Ngô Viêt Trung
  • Wolfgang Vogel
Article

Mathematics Subject Classification (1991)

14A15 14C17 14Q20 13C05 13P10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A-H-V]
    Achilles, R., Huneke, C. and Vogel, W.: A criterion for intersection multiplicity one. Nagoya Math. J.100, 49–63 (1985)Google Scholar
  2. [Amo]
    Amoroso, F.: Test d'appartenance d'après un théorèm de Kollár. C.R. Acad. Sci. Paris309, 691–695 (1989)Google Scholar
  3. [B-M]
    Bayer, D. and Mumford, D.: What can be computed in algebraic geometry? In: Eisenbud, D. and L. Robbiano, L. (eds.): “Computational Algebraic Geometry and Commutative Algebra”, Proceedings Cortona 1991, Cambridge University Press, 1993, pp. 1–48Google Scholar
  4. [B-Y]
    Berenstein, C.A. and Yger, A.: Bounds for the degrees in the division problem. Michigan Math. J.126, 25–43 (1990)Google Scholar
  5. [Brl]
    Brownawell, D.: Bounds for the degrees in the Nullstellensatz. Annals of Math.126, 577–592 (1987)Google Scholar
  6. [Br2]
    Brownawell, D.: Note on a paper of P. Philippon. Michigan Math. J.34, 461–464 (1987)Google Scholar
  7. [C-G-H]
    Caniglia, L., Galligo, A. and Heintz, J.: Borne simple exponentielle pour les degrés dans le théorèm des zeros sur un corps de charactéristique quelconque. C.R. Acad. Sci. Paris307, 255–258 (1988)Google Scholar
  8. [Eis]
    Eisenbud D.: Commutative Algebra with a View Towards Algebraic Geometry, Graduate Texts in Mathematics, Springer, New York 1994Google Scholar
  9. [E-H]
    Eisenbud, D. and Harris, J.: Schemes: The Language of Modern Algebraic Geometry. Belmont, Wadsworth: 1992Google Scholar
  10. [F-V]
    Flenner, H. and Vogel, W.: On multiplicities of local rings. Manuscripta math78, 85–97 (1993)Google Scholar
  11. [Ful]
    Fulton, W.: Intersection Theory. Berlin Heidelberg New York, Springer: 1984Google Scholar
  12. [Gro]
    Gröbner, W.: Moderne Algebraische Geometrie. Wien, Springer Verlag: 1949Google Scholar
  13. [Har]
    Hartshorne, R.: Connectedness of the Hilbert scheme. Publicat. I.H.E.S.29, 261–304 (1966)Google Scholar
  14. [K-S]
    Kalkbrener, M. and Sturmfels, B.: Initial complexes of prime ideals. Advances in Mathematics, to appearGoogle Scholar
  15. [Kol]
    Kollár, J.: Sharp effective Nullstellensatz. Journal A.M.S.1, 963–975 (1988)Google Scholar
  16. [Ph]
    Philippon, P.: Lemmes de zéros dans les groupes algébriques commutatifs. Bull. Soc. Math. France114, 335–383 (1986)Google Scholar
  17. [R-V]
    Renschuch, B. and Vogel, W.: Perfektheit und die Umkehrung des Bezoutschen Satzes. Math. Nachrichten148, 313–323 (1990)Google Scholar
  18. [Sh]
    Shiffman, B.: Degree bounds for the division problem in polynomial ideals. Michigan Math. J.36, 163–171 (1989)Google Scholar
  19. [S-V]
    Stückrad, J. and Vogel, W.: Buchsbaum Rings and Applications. Berlin Heidelberg New York, Springer: 1986Google Scholar
  20. [Stu]
    Sturmfels, B.: Gröbner bases of toric varieties. Tohoku Math. J.43, 249–261 (1991)Google Scholar
  21. [Tho]
    Thomas, R.: A geometric Buchberger algorithm for integer programming, Mathematics of Operations Research, to appear.Google Scholar
  22. [Vo]
    Vogel, W.: Lectures on results on Bezout's Theorem. (Lecture Notes, Tata Institute of Fundamental Research, Bombay, No. 74) Berlin Heidelberg New York, Springer: 1984Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Bernd Sturmfels
    • 1
  • Ngô Viêt Trung
    • 2
  • Wolfgang Vogel
    • 3
  1. 1.Department of MathematicsUniversity of CaliforniaBerkeleyUSA
  2. 2.Institute of MathematicsHanoiVietnam
  3. 3.Department of MathematicsMassey UniversityPalmerston NorthNew Zealand

Personalised recommendations