Skip to main content
Log in

Influence of adsorption on the measurement of diffusion coefficients by Taylor dispersion

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The effect of adsorption on the measurement of diffusion coefficients by the Taylor dispersion technique is investigated by modifying the governing equation to account for reversible, nonequilibrium adsorption. The resulting two-dimensional equations are solved by an explicit finite-difference technique. Experimental data for the acridine carbon dioxide system indicated that acridine adsorbs on the walls on the tubing and these data were investigated with this model. The influence of carious parameters including the number of sites and the rates of adsorption desorption was investigated by conducting a parametric sensitivity analysis on the model. It was found that adsorption of the solute on the wall of the tubing could produce an error as high as 35% on the measured diffusion coefficient compared to the actual diffusion coellicient. Examination of the influence of each of the parameters will enable Inure investigators to reduce the effect of adsorption in the measurement of diffusion coefficients by Taylor dispersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Stilbs,Progr. NMR Spetrosc. 19:1 (1987).

    Article  Google Scholar 

  2. A. J. Fasteal,Can. J. Chem. 68:1611 (1990).

    Article  Google Scholar 

  3. L. Paduano, R. Sartori, V. Vitagliano, and L. Constantino,J. Solut. Chem. 19:31 (1990).

    Article  Google Scholar 

  4. A. Alizadeh, C. A. Nieto De Castro, and W. A. Wakeham,Int. J. Thermophys. 1:243 (1980).

    Article  ADS  Google Scholar 

  5. K. C. Pratt and W. A. Wakeham,Proc. R. Soc. London 336:393 (1974).

    Article  ADS  Google Scholar 

  6. R. Feist and G. M. Scheider,Sep. Sci. Technol. 17:261 (1982).

    Article  Google Scholar 

  7. P. A. Wells, R. P. Chaplin, and N. R. Foster,J. Supercit. Fluids 3:8 (1990).

    Article  Google Scholar 

  8. A. A. Clifford and S. E. Coleby,Proc. Roy Soc. Lond. A433:63 (1991).

    Article  ADS  Google Scholar 

  9. W. Loh, C. A. Tonegutti, and P. L. O. Volpe,J. Chem. Soc. Faraday Trans. 89:113 (1993).

    Article  Google Scholar 

  10. F. Galembeck,J. Polym. Sci. Polym. Lett. 16:1315 (1978).

    Google Scholar 

  11. J. Yao and G. Strauss,Langmuir 7:2353 (1991).

    Article  Google Scholar 

  12. I. C. S. F. Jardium, M. Sartoratto, P. R. Salida, C. Archundia, and K. E. Collins,Appl. Radiat. Isot. 40:643 (1989)

    Article  Google Scholar 

  13. M. Orejuela, M. S. thesis (Texas A&M University, College Station, 1994).

  14. B. L. Hamilton, M. S. thesis (University of Wyoming, 1992).

  15. V. M. Shenai, B. L. Hamilton, and M. A. Mathews, InSupercritical Fluid Engineering Science Fundamentals and Applications, J. F. Brennecke and E. Kiran, eds. American Chemical Sociey, Washington, DC, 1993.

    Google Scholar 

  16. C. Erkey and A. Akgermann,AIChE J. 36:1715 (1990.

    Article  Google Scholar 

  17. J. J. Shim and K. P. Johnston.AIChE. J. 37:607 (1991).

    Article  Google Scholar 

  18. N. Wakao, S. Kaguci and J. M. Smith,Ind. Eng. Chem. Res. 19:363 (1980).

    Google Scholar 

  19. H. W. Haynes,Catal. Res. Sci. Eng. 30:563 (1988).

    Article  Google Scholar 

  20. G. Taylor,Proc. R. Soc. London 219:186 (1953)

    Article  ADS  Google Scholar 

  21. G. Taylor,Proc. R. Soc. London 225:473 (1954).

    Article  ADS  Google Scholar 

  22. R. Aris,Proc. R. Soc. London 235:67 (1956).

    Article  ADS  Google Scholar 

  23. M. J. E. Golay. inGas Chromatography. D. H. Desty: ed. (Butterworth, London. 1959).

    Google Scholar 

  24. T. Boddington and A. A. Clifford,Proc. Roy. Soc. London A 179: (1993).

  25. S. A. Smith, V. M. Shenai, and M. A. Mattews,J. Supererit. Fluids 3:175 (1991).

    Article  Google Scholar 

  26. J. P. Boris and D. L. Book,J. Comp. Phys. 11:38 (1973).

    Article  MATH  ADS  Google Scholar 

  27. K. P. Mayock, J. M. Tarbell, and J. L. Duda.Sep. Sci. Tech. 15:1285 (1980).

    Article  Google Scholar 

  28. D. L. Book, J. P. Boris, and K. Hain,J. Comp. Phys. 18:248 (1975).

    Article  MATH  ADS  Google Scholar 

  29. B. W. Right, M. L. Lee, and G. M. Booth,Chromatographia 15:584 (1982).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madras, G., Hamilton, B.L. & Matthews, M.A. Influence of adsorption on the measurement of diffusion coefficients by Taylor dispersion. Int J Thermophys 17, 373–389 (1996). https://doi.org/10.1007/BF01443398

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01443398

Key words

Navigation