Skip to main content
Log in

A uniformly differentiable approximation scheme for delay systems using splines

  • Published:
Applied Mathematics and Optimization Aims and scope Submit manuscript

Abstract

A new spline-based scheme is developed for linear retarded functional differential equations within the framework of semigroups on the Hilbert spaceR n ×L 2. The approximating semigroups inherit in a uniform way the characterization for differentiable semigroups from the solution semigroup of the delay system (e.g., among other things the logarithmic sectorial property for the spectrum). We prove convergence of the scheme in the state spacesR n ×L 2 andH 1. The uniform differentiability of the approximating semigroups enables us to establish error estimates including quadratic convergence for certain classes of initial data. We also apply the scheme for computing the feedback solutions to linear quadratic optimal control problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Baker, Jr., Padé Approximants, Part I: Basic Theory, Addison-Wesley, Reading, MA, 1981.

    Google Scholar 

  2. H. T. Banks and J. A. Burns, Hereditary control problems: numerical methods based on averaging approximations, SIAM J. Control Optim., 16 (1978), 169–208.

    Google Scholar 

  3. H. T. Banks and F. Kappel, Spline approximations for functional differential equations, J. Differential Equations, 34 (1979), 496–522.

    Google Scholar 

  4. H. T. Banks and K. Kunisch, The linear regulator problem for parabolic systems, SIAM J. Control Optim., 22 (1984), 684–698.

    Google Scholar 

  5. H. T. Banks, R. K. Powers, and I. G. Rosen, Inverse problems in the modeling of vibrations of flexible beams, in Distributed Parameter Systems (F. Kappel, K. Kunisch, and W. Schappacher, eds.), pp. 1–22, Lecture Notes in Control and Information Sciences, Vol. 102, Springer-Verlag, Heidelberg, 1987.

    Google Scholar 

  6. C. Bernier and A. Manitius, On semigroups inR n ×L p corresponding to differential equations with delays, Canad. J. Math., 30 (1978), 897–914.

    Google Scholar 

  7. J. S. Gibson, Linear-quadratic optimal control of hereditary differential systems: infinitedimensional Riccati equations and numerical approximations, SIAM J. Control Optim., 21 (1983), 95–139.

    Google Scholar 

  8. J. K. Hale, Theory of Functional Differential Equations, Springer-Verlag, New York, 1977.

    Google Scholar 

  9. K. Ito, On the approximation of eigenvalues associated with functional differential equations, J. Differential Equations, 60 (1985), 285–300.

    Google Scholar 

  10. K. Ito, Legendre-tau approximation for functional differential equations, Part III: Eigenvalue approximations and uniform stability, in Distributed Parameter Systems (F. Kappel, K. Kunisch, and W. Schappacher eds.), pp. 191–212, Lecture Notes in Control and Information Sciences, Vol. 75, Springer-Verlag, Heidelberg, 1985.

    Google Scholar 

  11. K. Ito and F. Kappel, A Uniformly Differentiable Approximation Scheme for Delay Systems using Splines, Report No. 94, Institute für Mathematik, Technische Universität Graz und Universität Graz, 1987.

  12. K. Ito and R. Teglas, Legendre-tau approximation for functional differential equations, SIAM J. Control Optim., 24 (1986), 737–759.

    Google Scholar 

  13. K. Ito and R. Teglas, Legendre-tau approximation for functional differential equations, Part II: The linear quadratic optimal control problem, SIAM J. Control Optim., 25 (1987), 1379–1408.

    Google Scholar 

  14. F. Kappel and G. Propst, Approximation of feedback controls for delay systems using Legendre polynomials, Conf. Sem. Mat. Univ. Bari, 201 (1984), 1–36.

    Google Scholar 

  15. F. Kappel and D. Salamon, Spline approximation for retarded systems and the Riccati equation, SIAM J. Control Optim., 25 (1987), 1082–1117.

    Google Scholar 

  16. F. Kappel and D. Salamon, On the stability properties of spline approximations for retarded systems, SIAM J. Control Optim., 27 (1989), 407–431.

    Google Scholar 

  17. F. Kappel and D. Salamon, An approximation theorem for the algebraic Riccati equation, SIAM J. Control Optim., 28 (1990), 1136–1147.

    Google Scholar 

  18. T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1966.

    Google Scholar 

  19. I. Lasiecka and A. Manitius, Differentiability and convergence rates of approximating semigroups for retarded functional differential equations, SIAM J. Numer. Anal., 25 (1988), 883–926.

    Google Scholar 

  20. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.

    Google Scholar 

  21. G. Propst, Piecewise linear approximation for hereditary control problems, Report No. 87-11, Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA, 1987.

    Google Scholar 

  22. D. Salamon, Structure and stability of finite dimensional approximations for functional differential equations, SIAM J. Control Optim., 23 (1985), 928–951.

    Google Scholar 

  23. M. H. Schultz, Spline Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1973.

    Google Scholar 

  24. R. B. Vinter, Filter stability of stochastic evolution equations, SIAM J. Control Optim., 15 (1977), 465–485.

    Google Scholar 

  25. R. B. Vinter, On the evolution of the state of linear differential delay equations inM 2: properties of the generator, J. Inst. Math. Appl., 21 (1978), 13–23.

    Google Scholar 

  26. G. F. Webb, Functional differential equations and nonlinear semigroups inL p-spaces, J. Differential Equations, 20 (1976), 71–89.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work done by K. Ito was supported by AFOSR under Contract No. F-49620-86-C-0111, by NASA under Grant No. NAG-1-517, and by NSF under Grant No. UINT-8521208. Work done by F. Kappel was supported by AFOSR under Grant No. 84-0398 and by FWF(Austria) under Grants S3206 and P6005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ito, K., Kappel, F. A uniformly differentiable approximation scheme for delay systems using splines. Appl Math Optim 23, 217–262 (1991). https://doi.org/10.1007/BF01442400

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01442400

Keywords

Navigation