Skip to main content
Log in

On equiwellset minimum problems

  • Published:
Applied Mathematics and Optimization Submit manuscript

Abstract

A sequence of minimum problems given on a metric space, together with a limit problem, is called equiwellset if every problem has exactly one solution, if the values converge, and if any asymptotically minimizing sequence converges to the solution of the limit problem. When all problems are equal we get the classical definition of Tyhonov. A metric characterization of equiwellposedness is given that generalizes results of Vainberg for a single problem. Differential characterizations are also obtained extending a result of Asplund-Rockafellar. Applications are given to the epsilon method and to the perturbations of the linear quadratic problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Poracka-Divis, Existence theorems and convergence of minimizing sequences in extremum problems,S.I.A.M.J. Math. Anal. 2 (1971), 501–510.

    Google Scholar 

  2. M. M. Vainberg, La problème de la minimization des fonctionelles non linéaires,C.I.M.E. IV ciclo (1970).

  3. J. W. Daniel,The Approximate Minimization of Functionals, Prentice-Hall, 1971.

  4. T. Zolezzi, Characterization of some variational perturbations of the abstract linear-quadratic problem, to appear onS.I.A.M.J. Control Optimization.

  5. E. Asplund andR. T. Rockafellar, Gradients of convex functions,Trans. Amer. Math. Soc. 123 (1966), 443–467.

    Google Scholar 

  6. E. Cavazzuti andN. Pacchiarotti, Condizioni sufficienti per la dipendenza continua dei minimi da un parametro,Boll. Un. Mat. Ital. 13 B (1976), 261–279.

    Google Scholar 

  7. M. Furi andA. Vignoli, (a) About wellposed optimization problems for functionals in metric spaces,J. Optimization Theory Appl. 5 (1970), 225–229; (b) A characterization of wellposed minimum problems in a complete metric space,J. Optimization Theory Appl. 5 (1970), 452–461.

    Google Scholar 

  8. B. T. Poljak, Existence theorems and convergence of minimizing sequences in extremum problems with restrictions,Soviet Math. Dokl. 166 (1966), 72–75.

    Google Scholar 

  9. M. Furi, M. Martell, andA. Vignoli, On minimum problems for families of functionals,Ann. Mat. Pura Appl. 86 (1970), 181–188.

    Google Scholar 

  10. A. V. Balakrishnan, A computational approach to the maximum principle,J. Comput. System Sci. 5 (1971), 163–191.

    Google Scholar 

  11. J. P. Aubin, Estimate of the error in the approximation of optimization problems with constraints by problems without constraints,Control Theory and the Calculus of Variations, edited by A. V. Balakrishnan, Academic Press, 1969.

  12. U. Mosco, Convergence of convex sets and of solutions of variational inequalities,Advances in Math. 3 (1969), 510–585.

    Google Scholar 

  13. R. T. Rockafellar, Level sets and continuity of conjugate convex functions,Trans. Amer. Math. Soc. 123 (1966), 46–63.

    Google Scholar 

  14. E. de Giorgi andT. Franzoni, Su un tipo di convergenza variazionale,Atti Accad. Naz. Lincei Rend. Sci. Fis. Mat. Natur. 58 (1975), 842–850.

    Google Scholar 

  15. T. Zolezzi, On convergence of minima,Boll. Un. Mat. Ital. 8 (1973), 246–257.

    Google Scholar 

  16. T. Zolezzi,Approximations and Perturbations of Minimum Problems, Book in preparation.

  17. P. P. Mosolov andV. P. Mjasnikov, On the correctness of boundary value problems in the mechanics of continuous media,Math. USSR Sb. 17 (1972), 257–268.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. L. Lions

Work partially supported by Laboratorio di Matematica Applicata del C.N.R. presso l'Università di Genova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zolezzi, T. On equiwellset minimum problems. Appl Math Optim 4, 209–223 (1977). https://doi.org/10.1007/BF01442140

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01442140

Keywords

Navigation