Skip to main content
Log in

A penalty function proof of a Lagrange multiplier theorem with application to linear delay systems

  • Published:
Applied Mathematics and Optimization Submit manuscript

Abstract

Using a penalty function method, a Lagrange multiplier theorem in dual Banach spaces is proved. This theorem is applied to the optimal control of linear, autonomous time-delay systems with function space equality end condition and pointwise control restrictions. Under an additional regularity condition, the resulting Lagrange multiplier can be identified with an element ofL .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Balakrishnan, The epsilon technique—a constructive approach to optimal control, in:Control Theory and Calculus of Variations, ed. by L. W. Neustadt, Academic Press, New York, 1967.

    Google Scholar 

  2. A. V. Balakrishnan, On a new computing technique in optimal control,SIAM J. Control, 6, 149–173 (1968).

    Google Scholar 

  3. A. V. Balakrishnan, A computational approach to the maximum principle,J. Computer Syst. Sci., 5, 163–191 (1971).

    Google Scholar 

  4. H. T. Banks, and G. A. Kent, Control of functional differential equations of retarded and neutral type with target sets in function space,SIAM J. Control, 10, 567–593 (1972).

    Google Scholar 

  5. H. T. Banks, and A. Manitius, Application of abstract variational theory to hereditary systems—a survey,IEEE Transactions on Automatic Control, AC-19, 524–533 (1974).

    Google Scholar 

  6. G. R. Bates,Hereditary Optimal Control Problems, Ph.D. Thesis, Purdue University, West Lafayette, Ind., 1977.

  7. L. D. Berkovitz, A penalty function proof of the maximum principle,Appl. Math. Optim., 2, 291–303 (1975/6).

    Google Scholar 

  8. E. J. Beltrami, A constructive proof of the Kuhn-Tucker multiplier rule,J. Math. Anal. Appl., 26, 297–306 (1969).

    Google Scholar 

  9. Z. Bien,Optimal Control of Delay Systems, Ph.D. Thesis, University of Iowa, Iowa, 1975.

    Google Scholar 

  10. Z. Bien and D. H. Chyung, Optimal control of delay systems with a final function condition,Int. J. Control, 32, 539–560 (1980).

    Google Scholar 

  11. M. Brokate, A regularity condition for optimization in Banach spaces: Counterexamples,Appl. Math. Optim., 6, 189–192 (1980).

    Google Scholar 

  12. H. H. Buehler, Application of Neustadt's theory of extremals to an optimal control problem with a functional differential equation and a functional inequality constraint,Appl. Math. Optim., 2, 34–74 (1975/6).

    Google Scholar 

  13. F. Colonius,Hereditäre differenzierbare Systeme mit Funktionenraum—Endbedingung und punktweisen Steuerbeschränkungen: Notwendige Optimalitätsbedingungen und Erreichbarkeit, Dissertation, Universität Bremen, Bremen, 1979.

    Google Scholar 

  14. F. Colonius, Necessary optimality conditions for non-linear hereditary differential systems with function space end constraints, in:Functional Differential Systems and Related Topics, ed. by M. Kisielewicz, The Higher College of Engineering in Zielona Gora, Zielona Gora, 62–71, 1980.

    Google Scholar 

  15. F. Colonius, Regularization of Lagrange multipliers for time delay systems with fixed final state, in:Optimization and Optimal Control, ed. by W. Oettli et al., Springer-Verlag, 163–177, 1981.

  16. F. Colonius, and D. Hinrichsen, Optimal control of functional differential systems,SIAM J. Control Optim., 16, 861–879 (1978).

    Google Scholar 

  17. R. Courant,Calculus of Variations and Supplementary Notes and Exercises (mimeographed notes), supplementary notes by Martin Kruskal and Hanan Rubin, revised and amended by J. Moser, New York University, 1956–1957.

  18. S. Dolecki, and S. Rolewicz, Exact penalties for local minima,SIAM J. Control Optim., 17, 596–606 (1979).

    Google Scholar 

  19. J. Dugundjii,Topology, Allyn and Bacon, Boston-London-Sydney-Toronto, 1966.

    Google Scholar 

  20. K. Glashoff, Schwache Stetigkeit bei nichtlinearen Kontrollproblemen, Numerische Methoden bei Optimierungsaufgaben, Tagung Oberwolfach 1971=Internationale Schriftenreihe zur Numerischen Mathematik, Vol. 17, Birkhäuser Verlag, 1973.

  21. E. Hille, and R. S. Philips,Functional Analysis and Semi-groups, American Mathematical Society, Providence, R. I., 1974.

    Google Scholar 

  22. S. Kurcyusz, A local maximum principle for operator constraints and its application to systems with time lag,Control Cyber., 2, 99–125 (1973).

    Google Scholar 

  23. S. Kurcyusz, On the existence and non-existence of Lagrange multipliers in Banach spaces,J. Optim. Th. Appl., 20, 81–110 (1976).

    Google Scholar 

  24. S. Kurcyusz, and A. W. Olbrot, On the closure inW 1, q of the attainable subspace of linear time lag systems,J. Diff. Eq., 24, 29–50 (1977).

    Google Scholar 

  25. D. G. Luenberger,Optimization by Vector Space Methods, J. Wiley, New York, 1968.

    Google Scholar 

  26. K. Makowski, and L. W. Neustadt, Optimal control problems with mixed control phase variable equality and inequality constraints,SIAM J. Control, 12, 184–228 (1974).

    Google Scholar 

  27. E. J. McShane, The Lagrange multiplier rule,Am. Math. Monthly, 80, 922–925 (1973).

    Google Scholar 

  28. J. W. Mersky,An Application of the Epsilon Technique to Control Problems with Inequality Constraints, Ph.D. Thesis, University of California, Los Angeles, 1973.

    Google Scholar 

  29. S. M. Robinson, Stability theory for systems of inequalities in nonlinear programming; part II: Differentiable nonlinear systems,SIAM J. Num. Anal., 13, 497–513 (1976).

    Google Scholar 

  30. J. Warga,Optimal Control of Differential and Functional Equations, Academic Press, New York, 1972.

    Google Scholar 

  31. A. P. Wierzbicki, and S. Kurcyusz, Projection on a cone, penalty functionals, and duality theory for problems with inequality constraints in a Hilbert space,SIAM J. Control Optim., 15, 25–56 (1977).

    Google Scholar 

  32. K. Yosida,Functional Analysis, 4th ed., Springer-Verlag, New York, 1974.

    Google Scholar 

  33. J. Zowe, and S. Kurcyusz, Regularity and stability for the mathematical programming problem in Banach spaces,Appl. Math. Optim., 5, 49–62 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. V. Balakrishnan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colonius, F. A penalty function proof of a Lagrange multiplier theorem with application to linear delay systems. Appl Math Optim 7, 309–334 (1981). https://doi.org/10.1007/BF01442124

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01442124

Keywords

Navigation