Skip to main content
Log in

Vital issues in computing decompression schedules from fundamentals

I. Critical Supersaturation Versus Phase Equilibration

  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

A general review has been made of the vital issues which must be answered before any equation for predicting the occurrence of decompression sickness can be derived from fundamental physical and physiological experience. The evidence for the presence of a gas phase during a decompression which proves asymptomatic is discussed in detail. This queries the basic assumption inherent in calculation methods underlying the standard diving tables that there is a critical limit to the true supersaturation of a tissue by gas beyond which cavitation occurs. The evidence would seem more compatible with the formation of this gas phase for a much lower degree of supersaturation, if any, its presence not becoming manifest as symptoms during decompression provided its relative volume is not permitted to exceed a pain-provoking threshold.

Zusammenfassung

Dies ist eine Übersicht über die vitalen Faktoren, die bekannt sein müssen, ehe eine Gleichung zur Voraussage des Auftretens der Dekompressionskrankheit aus den Grundlagen der physikalischen und physiologischen Erfahrung abgeleitet werden kann. Der Beweis für das Vorliegen einer Gasphase während einer symptomfreien Dekompression wird eingehend beschrieben. Danach wird die Annahme in Frage gestellt, auf der alle Berechnungsmethoden der Standard-Tauchtabellen beruhen, dass eine kritische Grenze für wahre Übersättigung der Gewebe für Gas bestehe, oberhalb der Kavitation auftrete. Die Beweise scheinen mehr dafür zu sprechen, dass die Bildung dieser Gasphase bei viel niedrigeren Graden Übersättigung auftritt. Ihre Anwesenheit während der Dekompression wird jedoch nicht durch Symptome manifest, solange das relative Volumen eine schmerzprovozierende Schwelle nicht überschreitet.

Resume

Il s'agit ici de l'étude comparative des facteurs vitaux qui doivent être connus avant qu'une équation puisse être établie, équation permettant de prévoir l'apparition des affections dues à la décompression. Cette équation devra tenir compte des expériences faites tant sur le plan physique que physiologique. On décrit en détails les preuves apportées pour soutenir l'hypothèse qu'une phase gazeuse se produit même lors d'un état de décompression exempt de symptômes pathologiques. Par là, on met en doute la supposition sur laquelle reposent toutes les méthodes de calcul des tables standard de plongée, à savoir qu'il y a une valeur limite critique pour une véritable sursaturation des tissus par les gaz. Cette limite serait située au-dessus de la cavitation. Les preuves apportées semblent bien plus postuler que la formation de cette phase gazeuse se produit par des degrés bien inférieurs de sursaturation. Sa présence durant la décompression ne se manifeste pas par des symptômes typiques pour autant que son volume relatif ne dépasse pas un seuil provoquant la douleur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ALBANO, G. (1960): Etudes sur la decompression chez l'homme. Premier Colloque de Médecine Subaquatique, Cannes.

    Google Scholar 

  • ARMSTRONG, H.G. (1939): Principles and Practice of Aviation Medicine. Williams & Wilkins, Baltimore, p. 496.

    Google Scholar 

  • BATEMAN, J.B. (1951): Review of data on value of preoxygenation in prevention of decompression sickness. In: Decompression Sickness. J.F. Fulton (ed.), Saunders, Philadelphia, p. 242.

    Google Scholar 

  • BATEMAN, J.B. and LANG, J. (1945): Formation and growth of bubbles in aqueous solutions. Canad.J.Res., E 23: 22–31.

    Google Scholar 

  • BEHNKE, A.R. (1951): Decompression sickness following exposure to high pressures. In: Decompression Sickness. J.F. Fulton (ed.), Saunders, Philadelphia, 53–89.

    Google Scholar 

  • BEHNKE, A.R. (1967): The isobaric (oxygen window) principle of decompression. In: Trans. Third Annual Conference of the Marine Technol. Society, Marine Technol. Society, Washington D.C., 213–228.

    Google Scholar 

  • BEHNKE, A.R. and SHAW, L.A. (1937): Use of O2 in treatment of compressedair illness. Nav.Med.Bull., Washington D.C., 35: 61–73.

    Google Scholar 

  • BLANKENHORN, M.A. and FERRIS, E.B. (1944): The nature of aviators bends. Trans.Ass.Amer.Physiol., 58: 86–91.

    Google Scholar 

  • BLINKS, L.R., TWITTY, V.C. and WHITAKER, D.M. (1951): Bubble formation in frogs and rats. In: Decompression Sickness. J.F. Fulton (ed.), Saunders, Philadelphia, 145–164.

    Google Scholar 

  • BOOTHBY, W.M., LOVELACE, W.R. and BENSON, O.O. (1940): High altitude and its effect on the human body. J.Aero.Soc.Amer., 7: 1–7.

    Google Scholar 

  • BOYCOTT, A.E. and DAMANT, C.C. (1908): Experiments on the influence of fatness on susceptibility to caisson disease. J.Hyg. (Camb.), 8: 445–456.

    Google Scholar 

  • BOYCOTT, A.E., DAMANT, C.C. and HALDANE, J.S. (1908): The prevention of compressed-air illness. J.Hyg. (Camb.), 8:342–443.

    Google Scholar 

  • BUCKLES, R.G. (1968): The physics of bubble formation and growth. Aerospace Med., 39: 1062–9.

    Google Scholar 

  • BUHLMANN, A.A. (1969): The use of multiple inert gas mixtures in decompression. In: The Physiology and Medicine of Diving and Compressed-air Work. P.B. Bennett and D.H. Elliott (ed.), Bailliere, Tindall and Cassell, London, 366.

    Google Scholar 

  • CAMPBELL, J.A. (1924): Changes in the tension of carbon dioxide and oxygen injected under the skin and into the abdominal cavities. J.Physiol. (Lond.), 59: 1–6.

    Google Scholar 

  • CHASE, W.H. (1934): Anatomical and experimental observations on air embolism. Surg.Gynec.Obstet., 59: 569–577.

    Google Scholar 

  • CROCKER, W.E., DAVIDSON, W.M. and GOODENOUGH, F.C. (1951): Investigation into the decompression tables. II. Progress report on the first series of human exposure. Medical Research Council, Royal Naval Personnel Res. Comm. report UPS 118, London.

  • CROCKER, W.E. (1957): Investigation into the decompression tables, IX. Revised tables. Medical Research Council, Royal Naval Personnel Res. Comm. report UPS 171, London.

  • DWYER, J.V. (1956): Calculation of air decompression tables. US Navy Exp. Diving Unit, Proj. NS 185-005, subtask 5, Washington, D.C.

  • EISENBERG, P. (1961): Mechanics of cavitation. In: Handbook of Fluid Dynamics. V.L. Streeter (ed.), McGraw-Hill, New York, sect. 12.

    Google Scholar 

  • EVANS, A. and WALDER, D.N. (1969): Significance of gas micronuclei in the aetiology of decompression sickness. Nature (Lond.), 222: 251–252.

    Google Scholar 

  • EVELYN, K. (1941): The effect of simulated high altitudes on human subjects. Proc. Ninth Meeting Aviat.Med.Res., Canada, National Res. Council, App. A.

  • FERRIS, E.B. and ENGEL, G.L. (1951): The clinical nature of high altitude decompression sickness. In: Decompression Sickness. J.F. Fulton (ed.), Saunders, Philadelphia, 4–52.

    Google Scholar 

  • FLYNN, E.T. (1970): Analysis of decompression limitations in small animals. Proc. Fourth Symp. Underwater Physiology. C.J. Lambertsen (ed.), Academic Press, New York (in press).

    Google Scholar 

  • GERSH, I., HAWKINSON, G.E. and RATHBUN, E.M. (1944): Tissue and vascular bubbles after decompression from high pressure atmospheres, correlation of specific gravity with morphological changes. J.Cell comp.Physiol., 24: 35–70.

    Google Scholar 

  • GERSH, I. and CATCHPOLE, H.R. (1951): Physical factors and pathological consequences. In: Decompression Sickness. J.F. Fulton (ed.), Saunders, Philadelphia, 165–181.

    Google Scholar 

  • GRAY, J.S. (1944): Aeroembolism induced by exercise in cadets at 23,000 feet. US Nat.Res.Council, Comm.Aviat.Med. report 260, Washington, D.C.

  • GRAY, J.S. (1951): Constitutional factors affecting susceptibility to decompression sickness. In: Decompression Sickness. J.F. Fulton (ed.), Saunders, Philadelphia, 182–191.

    Google Scholar 

  • HARRIS, M., BERG, W.E., WHITAKER, D.M., TWITTY, V.C. and BLINKS, L.R. (1945): The relation of exercise to bubble formation in animals decompressed to sea level from high barometric pressures. J.gen.Physiol., 28: 241–244.

    Google Scholar 

  • HARVEY, E.N. (1951a): Physical factors in bubble formation. In: Decompression Sickness. J.F. Fulton (ed.), Saunders, Philadelphia, 90–114.

    Google Scholar 

  • HARVEY, E.N. (1951b): Animal experiments on bubble formation. I. Bubble formation in rats. In: Decompression Sickness. J.F. Fulton (ed.), Saunders, Philadelphia, 115–144.

    Google Scholar 

  • HARVEY, E.N., BARNES, D.K., McELROY, W.D., WHITELEY, A.H., PEASE, D.C. and COOPER, K.W. (1944): Bubble formation in animals. I. Physical factors. J.Cell comp.Physiol., 24: 1–22.

    Google Scholar 

  • HARVEY, E.N., WHITELEY, A.H., McELROY, W.D., PEASE, D.C. and BARNES, D.K. (1944): Bubble formation in animals. II. Gas nuclei and their distribution in blood and tissues. J.Cell comp.Physiol., 24: 23–34.

    Google Scholar 

  • HARVEY, E.N., McELROY, W.D., WHITELEY, A.H., WARREN, G.H. and PEASE, D.C. (1944): Bubble formation in animals. III. An analysis of gas tension and hydrostatic pressure in rats. J. Cell comp. Physiol., 24: 117–132.

    Google Scholar 

  • HAWKINS, J.A., SHILLING, C.W. and HANSEN, R.A. (1935): Suggested change in calculating decompression tables for diving. Nav.Med.Bull. (Wash.), 33: 327–338.

    Google Scholar 

  • HAYMAKER, W. (1957): Decompression sickness, etiology and pathogenesis. In: Handbuch der Speziellen Pathologischen Anatomie und Histologie. A. Lubarsh, F. Henke and R. Rossle (ed.), Springer-Verlag, Berlin, 13: 1600–1675.

    Google Scholar 

  • HEMPLEMAN, H.V. (1952): Investigation into the decompression tables. III. A new theoretical basis for the calculation of decompression tables. Medical Research Council, Royal Naval Personnel Res.Comm. report UPS 131, London.

  • HEMPLEMAN, H.V. (1957): Investigation into the decompression tables, further basic facts. Medical Research Council, Royal Naval Personnel Res. Comm. report UPS 168, London.

  • HEMPLEMAN, H.V. (1960): The unequal rates of uptake and elimination of tissue nitrogen in diving procedures. Medical Research Council, Royal Naval Personnel Res. Comm. report UPS 195, London.

  • HEMPLEMAN, H.V. (1969): British decompression theory. In: The Physiology and Medicine of Diving and Compressed-air Work. P.B. Bennett and D.H. Elliott (ed.), Bailliere, Tindall and Cassell, London, 291–318.

    Google Scholar 

  • HESTER, R. (1970): Criteria for bubble growth. In: Proc. Fourth Symp. Underwater Physiol. C.J. Lambertsen (ed.), Academic Press, New York (in press).

    Google Scholar 

  • HILL, L. (1912): Caisson Sickness and the Physiology of Work in Compressed Air. Arnold, London.

    Google Scholar 

  • HILLS, B.A. (1966): A Thermodynamic and Kinetic Approach to Decompression Sickness. Libr.Board of S.Australia, Adelaide.

    Google Scholar 

  • HILLS, B.A. (1967a): Decompression sickness: a study of cavitation at the liquid-liquid interface. Aerospace Med., 38: 814–7.

    Google Scholar 

  • HILLS, B.A. (1967b): A thermal analogue for the optimal decompression of divers. Phys.Med.Biol., 12: 437–454.

    PubMed  Google Scholar 

  • HILLS, B.A. (1968a): Relevant phase conditions for predicting occurrence of decompression sickness. J.appl.Physiol., 25: 310–315.

    PubMed  Google Scholar 

  • HILLS, B.A. (1968b): The variation in susceptibility to decompression sickness. Int.J.Biometeor., 12: 343–349.

    Google Scholar 

  • HILLS, B.A. (1969a): Thermodynamic decompression: an approach based upon the concept of phase equilibration in tissue. In: The Physiology and Medicine of Diving and Compressedair Work. P.B. Bennett and D.H. Elliott (ed.), Bailliere, Tindall and Cassell, London, 317–356.

    Google Scholar 

  • HILLS, B.A. (1969b): Acclimatization to decompression sickness: a study of passive relaxation in several tissues. Clin.Sci., 37: 109–124.

    PubMed  Google Scholar 

  • HILLS, B.A. (1969c): A quantitative correlation of conditions for the occurrence of decompression sickness for aerial and underwater exposures. Rev.Subaqua.Physiol.Hyperbar. Med., 1 : Nr. 3.

  • HILLS, B.A. (1970a): Limited supersaturation versus phase equilibration in predicting the occurrence of decompression sickness. Clin.Sci. 37 (in press).

  • HILLS, B.A. (1970b): Concepts of inert gas exchange within tissue during decompression. In: Proc.Fourth Symp. Underwater Physiology. C.J. Lambertsen (ed.), Academic Press, New York (in press).

    Google Scholar 

  • HILLS, B.A. and LeMESSURIER, D.H. (1969): Unsaturation in living tissue relative to the pressure and composition of inhaled gas and its significance in decompression theory. Clin. Sci., 36: 185–195.

    PubMed  Google Scholar 

  • HORTON, J.W. (1968): Maximum sonar echoes from a gas bubble in blood. In: Proc. 21st Ann Conference Eng.Med.Biol. (Houston), 10: 84.

    Google Scholar 

  • HUNTEC, Ltd. (1964): Application of ultrasonics to the aetiology of decompression sickness. I. A feasibility study. Roy. Canad. Navy report CD 300018/0251/700-22-763, Toronto.

  • JONES, H.B. (1951): Gas exchange and blood-tissue perfusion factors in various body tissues. In: Decompression Sickness. J. F. Fulton (ed.), Saunders, Philadelphia, 278–321.

    Google Scholar 

  • KETY, S.S. (1951): Theory and applications of exchange of inert gas at lungs and tissues. Pharmacol.Rev., 3: 1–41.

    PubMed  Google Scholar 

  • LeMESSURIER, D.H. and HILLS, B.A. (1965): Decompression sickness: a thermodynamic hypothesis arising from a study of Torres Strait diving techniques. Hvalradets Skrifter Norske Videnkaps. Akad. Oslo, 48: 54–84.

    Google Scholar 

  • LEYDEN, E. (1879): Über die durch plötzliche Verminderung des Barometerdrucks entstehende Rückenmarksaffektion. Arch. Psychiat.Nervenkr., 9: 316–324.

    Google Scholar 

  • McCALLUM, R.I. (1968): Decompression sickness: a review. Brit.J. Industr. Med., 25: 4–21.

    PubMed  Google Scholar 

  • McELROY, W.D., WHITELEY, A.H., WARREN, G.H. and HARVEY, E.N. (1944): Bubble formation in animals. IV. The relative importance of CO2 concentration and mechanical tension during muscle contraction. J. Cell. comp. Physiol., 24: 133–146.

    Google Scholar 

  • McELROY, W.D., WHITELEY, A.H., COOPER, K.W., PEASE, D.C., WARREN, G.H. and HARVEY, E.N. (1944): Bubble formation in animals. VI. Physiological factors and the role of circulation and respiration. J. Cell comp. Physiol., 24: 273–290.

    Google Scholar 

  • MACKAY, R.S. and RUBISSOW, G. (1970): Detection of bubbles in tissues and blood. In: Proc. Fourth Symp. Underwater Physiol. C.J. Lambertsen (ed.), Academic Press, New York (in press).

    Google Scholar 

  • MOLUMPHY, C.G. (1950): Computation of helium-oxygen decompression tables. US Navy Exp. Diving Unit, Washington, research report 7–50.

    Google Scholar 

  • NACHEMSON, A.L. and EVANS, J.H. (1968): Some mechanical properties of the third human lumbar interlaminar ligament (LIGAMENTUM FLAVUM). J. Biomechanics, 1: 211–220.

    Google Scholar 

  • NIMS, L.F. (1951): Environmental factors affecting decompression sickness: a physical theory of decompression sickness. In: Decompression Sickness. J.F. Fulton (ed.), Saunders, Philadelphia, 192–222.

    Google Scholar 

  • NOLTINGK, B.E. and NEPPIRAS, E.A. (1950): Cavitation produced by ultrasonics. Proc.Roy.Soc., A 63: 674–685 and 1032–1038.

    Google Scholar 

  • PATON, W.D.M. and WALDER, D.N. (1954): Compressed air illness. Medical Research Council, London, Special report 281.

    Google Scholar 

  • RASHBASS, C. (1955): Investigation into the decompression tables. VI. New tables. Medical Research Council, Royal Naval Personnel Res. Comm. report UPS 151, London.

  • RYDER, H.W., STEVENS, C.D., WEBB, J.P. and BLANKENHORN, M.A. (1945): The measurement of decompression sickness. US Nat. Res. Council. Comm. Aviat. Med. report 412, Washington, D.C.

  • SCHREINER, H.R. (1968): Safe ascent after deep dives. Rev.Subaqua. Physiol. Hyperbar. Med., 1: 28–37.

    Google Scholar 

  • SCHREINER, H.R. and KELLEY, P.L. (1970): A pragmatic view of decompression. In: Proc. Fourth Symp. Underwater Physiology. C.J. Lambertsen (ed.), Academic Press, New York (in press).

    Google Scholar 

  • SPENCER, M.P. and CAMPBELL, S.D. (1968): Development of bubbles in venous and arterial blood during hyperbaric decompression. Bull. Mason Clinic, 22: 26–32.

    Google Scholar 

  • SPENCER, M.P. and DENISON, A.B. (1951): The square-wave electromagnetic flowmeter: theory of operation and design of magnetic probes for clinical and experimental application. I.R.E. Trans Med. Electronics, ME-6, 220.

  • SUTPHEN, J.H. (1968): The feasibility of using pulsed ultrasound to detect the presence of in vivo tissue gas bubbles. US Navy Research Work Unit MF 011.99-9003.01, Bureau of Ships, Washington, D.C., report 508.

    Google Scholar 

  • THOMAS, S. and WILLIAMS, O.L. (1944): High altitude joint pains: their radiographic aspects. US Nat. Res. Council — Comm.Aviat. Med. report 395, Washington, D.C.

  • TUREEN, L.L. and DEVINE, J.B. (1936): The pathology of air embolism. J.Mo.Med.Ass., 33: 141–4.

    Google Scholar 

  • US NAVY (1959): Diving Manual. Bureau of Ships, Washington, D.C.

    Google Scholar 

  • VAN LIEW, H.D., BISHOP, B.P., WALDER, D. and RAHN, H. (1965): Effects of compression on composition and absorption of tissue gas pockets. J.appl.Physiol., 20: 927–933.

    PubMed  Google Scholar 

  • VAN LIEW, H.D. (1970): Dissolved gas washout and bubble absorption in routine decompression. In: Proc. Fourth Symp. Underwater Physiology. C.J. Lambertsen (ed.), Academic Press, New York (in press).

    Google Scholar 

  • WALDER, D.N. (1966): Adaptation to decompression sickness in caisson work. In: Biometeorology, Vol. II. S.W. Tromp and W.H. Weihe (ed.), Pergamon, Oxford, 350–359.

    Google Scholar 

  • WALDER, D.N. (1969): The prevention of decompression sickness in compressed-air workers. In: The Physiology and Medicine of Diving and Compressed Air Work. P.B. Bennett and D.H. Elliott (ed.), Bailliere, Tindall and Cassell, London, 437–450.

    Google Scholar 

  • WALDER, D.N., EVANS, A. and HEMPLEMAN, H.V. (1968): Ultrasonic monitoring of decompression. Lancet, i: 897–898.

    Google Scholar 

  • WALSH, M.N. (1941): Changes in intracranial volume on ascent to high altitudes and descent as in diving. Proc.Mayo Clinic., 16: 220–221.

    Google Scholar 

  • WEBB, J.P., RYDER, H.W., ENGEL, G.L., ROMANO, J., BLANKENHORN, M.A. and FERRIS, E.B. (1943): The effect on susceptibility to decompression sickness of preflight oxygen inhalation at rest as compared to O2 inhalation during strenuous exercise. US Nat.Res.Council — Comm. Aviat. Med. Report 134, Washington, D.C.

  • WELSBY, V.G. (1969): Acoustic detection of gas bubbles in liquids. Royal Naval Physiol. report, Portsmouth.

  • WHITELEY, A.H., McELROY, W.D., WARREN, G.H. and HARVEY, E.N. (1944): Bubble formation in animals. V. Denitrogenation. J. Cell comp. Physiol., 24: 257–271.

    Google Scholar 

  • WILLMON, T.L. and BEHNKE, A.R. (1941): Nitrogen elimination and oxygen absorption at high barometric pressures. Amer. J. Physiol., 131: 633–638.

    Google Scholar 

  • WORKMAN, R.D. (1965): Calculation of decompression schedules for nitrogenoxygen and helium-oxygen dives. US Navy Exp. Diving Unit report 6–65, Washington, D.C.

  • WORKMAN, R.D. (1969): American decompression theory. In: The Physiology and Medicine of Diving and Compressed-air Work. P.B. Bennett and D.H. Elliott (ed.), Bailliere, Tindall and Cassell, London, 252–290.

    Google Scholar 

  • YARBOROUGH, O.D. (1937): Calculation of decompression tables. US Navy Exp. Diving Unit research report, Washington, D.C.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hills, B.A. Vital issues in computing decompression schedules from fundamentals. Int J Biometeorol 14, 111–131 (1970). https://doi.org/10.1007/BF01440958

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01440958

Keywords

Navigation