Skip to main content
Log in

Correlation of dense fluid self-diffusion, shear viscosity, and thermal conductivity coefficients

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A general procedure has been developed for simultaneously fitting any two of the self-diffusion coefficient, the viscosity (as the fluidity), and the thermal conductivity (as its reciprocal) as Dymond reduced coefficients, (D*,η*,λ*), to a simple function of the volume and the temperature for dense fluids. For example,D*=ζ12 V r/(1+ζ3,/V r), whereV r=V[1-ζ1(TT r)-ζ2(TT r)2].T r is any convenient temperature, here 273.15 K. AsV r is common to the two properties, only eight coefficients, ζj and ζk are required. Such reduced transport-coefficient curves are geometrically similar for members of groups of closely related compounds. The procedure has been extended to give “family” curves for such groups by fitting a pair of transport properties for three substances from the group in a single regression. Overall, fewer coefficients are required than for other schemes in the literature, and the fitting functions used are simpler. The curves so constructed can be used for the correlation of data obtained from different sources, as well as interpolation and, to a limited extent, extrapolation. A comparison is made for a number of compotmd groups between simultaneous fits of the pairs (D−η ), (D−λ), and (η−λ)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Dymond,Physica A 75:100 (1975)

    Google Scholar 

  2. D. Chandler,J. Chem. Phys. 62:1358 (1975).

    Google Scholar 

  3. B. J. Alder, D. M. Gass, and T. E. Wainwright,J. Chem. Phys. 53:3813 (1960).

    Google Scholar 

  4. J. J. Erpenbeck and W. W. Wood.Phys. Rev. 43:4354 (1991).

    Google Scholar 

  5. K. R. Harris.Mol. Phys. 77:1153 (1992).

    Google Scholar 

  6. J. H. Dymond,Chem. Soc. Rev. 14:317 (1985).

    Google Scholar 

  7. J. H. Dymond, P. M. Patterson, K. R. Harris, and L. A. Woolf,High Temp. High Press. 23:97 (1991).

    Google Scholar 

  8. M. J. Assael, J. H. Dymond, M. Papadaki, and P. M. Patterson,Int. J. Thermophys. 13:269 (1992).

    Google Scholar 

  9. K. R. Harris.High Temp. High Press. 25:359 (1993).

    Google Scholar 

  10. S. F. Y. Li, G. C. Mailland, and W. A. Wakeham,Int. J. Thermophys. 5:351 (1984).

    Google Scholar 

  11. H. Kashiwagi, T. Hashimoto, Y. Tanaka, H. Kubota, and T. Makita,Int. J. Thermophys. 3:201 (1982).

    Google Scholar 

  12. P. W. Brigdman,Proc. Am. Aced. Arts Sci. 61:57 (1926).

    Google Scholar 

  13. A. F. Collings and E. McLaughlin.Trans. Faraday Soc. 67:340 (1971).

    Google Scholar 

  14. J. H. Dymond, M. A. Awan, N. F. Glen, and J. D. Isdale,Int. J. Thermophys. 12:275 (1991).

    Google Scholar 

  15. M. J. Assael, M. Papadaki, and W. A. Wakcham,Int. J. Thermophys. 12:449 (1991).

    Google Scholar 

  16. B. Kaiser, A. Caesecke, and M. Stelbrink,Int. J. Thermophys. 12:289 (1991).

    Google Scholar 

  17. A. H. Krall, J. V. Sengers, and J. Kestin,J. Chem. Eng. Data 37:349 (1992).

    Google Scholar 

  18. J. H. Dymond and J. Robertson.Int. J. Thermophys. 6:21 (1985).

    Google Scholar 

  19. M. J. Assael, J. H. Dymond, S. K. Polimatidou, and E. Vogel,Int. J. Thermophys. 13:791 (1992).

    Google Scholar 

  20. M. A. McCool, A. F. Collings, and L. A. Woolf,J. Chem. Soc., Faraday Trans I 68:1489 (1972).

    Google Scholar 

  21. K. R. Harris,Physica A 94:448 (1978).

    Google Scholar 

  22. K. R. Harris, J. J. Alexander, T. Goscinska, R. Malhotra, L. A. Woolf, and J. H. Dymond,Mol. Phys. 78:335 (1993).

    Google Scholar 

  23. A. J. Easteal and L. A. Woolf,Int. J. Thermophys. 8:71 (1985).

    Google Scholar 

  24. B. Taxis, M. Zalaf, and W. A. Wakeham,Int. J. Thermophys. 9:21 (1988).

    Google Scholar 

  25. A. M. F. Palavra, W. A. Wakeham, and M. Zalaf,High Temp. High Press. 18:405 (1986).

    Google Scholar 

  26. H. Kashiwagi and T. Makita,Int. J. Thermophys. 3:289 (1952).

    Google Scholar 

  27. K. R. Harris, H. N. Lam, E. Raedt, A. J. Easteal, W. E. Price, and L. A. Woolf,Mol. Phys. 71:1205 (1990).

    Google Scholar 

  28. M. A. McCool and L. A. Woolf,J. Chem. Soc. Faraday Trans I 68:1971 (1972).

    Google Scholar 

  29. A. J. Easteal and L. A. Woolf,Mol. Phys. 78:335 (1993).

    Google Scholar 

  30. M. S. Benson and J. Winnick,J. Chem. Eng. Data 21:433 (1976).

    Google Scholar 

  31. F. X. Preilmeier and H.-D. Lüdemann,Mol. Phys. 58:593 (1986).

    Google Scholar 

  32. A. Kumagai and H. IwasakiJ. Chem. Eng. Data 23:193 (1978).

    Google Scholar 

  33. R. Diguet, R. Deul, and E. U. Franck,Ber. Bunsenges. Phys. Chem. 89:800 (1985).

    Google Scholar 

  34. C. C. Hsu and J. J. McKetta,J. Chem. Eng. Data 9:45 (1964).

    Google Scholar 

  35. F. Bachl, T. Vardag, S. Wappmann, and H.-D. Lüdemann,J. Mol. Liquids 54:193 (1992)

    Google Scholar 

  36. H. J. Parkhurst, Jr., and J. Jonas,J. Chem. Phys. 63:2698, 2705 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris, K.R. Correlation of dense fluid self-diffusion, shear viscosity, and thermal conductivity coefficients. Int J Thermophys 16, 155–165 (1995). https://doi.org/10.1007/BF01438966

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01438966

Key words

Navigation