Skip to main content
Log in

Vapor-liquid equilibria of binary mixtures of alkanols with alkanes from atmospheric pressure to the critical point

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A reformulated version of the Wong-Sandler mixing rule and the Peng-Robinson equation of state are used for the correlation and prediction of the vapor-liquid equilibrium of several alkanol + alkane binary systems. The description of these mixtures provides a stringent test since cubic equations of state with conventional mixing rules usually predict false liquid-liquid splits for such systems. For all systems, the model parameters used were fit to data on the lowest-temperature isotherm and then higher-temperature isotherms were successfully predicted with those parameters. False phase splitting was avoided by using a constrained parameter fit. For highly asymmetric (in size) alkanol+alkane binaries four parameters were necessary for an accurate representation of the data, while for less asymmetric alkanol + alkane binaries only two parameters were used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. S. H. Wong and S. I. Sandler,AIChE J. 38:671 (1992).

    Google Scholar 

  2. D. S. H. Wong, H. Orbey, and S. I. Sandler,Ind. Eng. Chem. Res. 31:2033 (1992).

    Google Scholar 

  3. H. Orbey, D. S. H. Wong, and S. I. Sandler,Fluid Phase Equil. 85:4 (1993).

    Google Scholar 

  4. H. Orbey and S. I. Sandler,AIChE J. 41:683 (1995).

    Google Scholar 

  5. J. Schwartzentruber, F. Galivel-Solastiouk, and H. Renon,Fluid Phase Equil. 38:217 (1987).

    Google Scholar 

  6. P. Englezos, N. Kaogaris, and P. R. Bishnoi,Fluid Phase Equil. 53:81 (1989).

    Google Scholar 

  7. M. R. Margerum and B. C.-Y. Lu,Fluid Phase Equil. 56:105 (1990).

    Google Scholar 

  8. P. Vonka, P. Dittrich, and J. Lovland,Fluid Phase Equil. 88:63 (1993).

    Google Scholar 

  9. R. Stryjek and J. H. Vera,Can. J. Chem. Eng. 64:323 (1986).

    Google Scholar 

  10. E. Brunner and W. Hultenschmidt,J. Chem. Thermodyn. 22:73 (1990).

    Google Scholar 

  11. F. Galivel-Solastiouk, S. Laugier, and D. Richon,Fluid Phase Equil. 28:73 (1986).

    Google Scholar 

  12. T. Holderbaum, A. Utzig, and J. Gmehling,Fluid Phase Equil. 63:219 (1991).

    Google Scholar 

  13. R. A. Wilsak, W. C. Scott, and G. Thodos,Fluid Phase Equil. 33:157 (1987).

    Google Scholar 

  14. W. C. Scott, R. A. Wilsak, and G. Thodos,J. Chem. Thermodyn. 19:449 (1987).

    Google Scholar 

  15. H. Huang, S. I. Sandler, and H. Orbey,Fluid Phase Equil. 96:143 (1994).

    Google Scholar 

  16. P. T. Eubank, personal communication, Texas A&M University (1993).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orbey, H., Sandier, S.I. Vapor-liquid equilibria of binary mixtures of alkanols with alkanes from atmospheric pressure to the critical point. Int J Thermophys 16, 695–704 (1995). https://doi.org/10.1007/BF01438854

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01438854

Key words

Navigation