Kinetic methods for quantifying magic

  • C. E. Klots
Original Contributions


Two methods are described for obtaining activation energies for evaporation from isolated clusters. They involve measurements of (1) kinetic energy distributions during evaporation and (2) metastable decay probabilities. The two methods supplement each other and can be applied to data garnered in the same apparatus. The methods are illustrated with applications to data in the literature on copper and carbon clusters. An even/odd alternation in evaporation energies from the copper clusters is consistent with a similar alternation in electron affinities, but not with elementary theory. Thermodynamic properties of carbon clusters are also deduced and discussed.


36.40.+d 34.30.+h 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mottelson, B.R.: In: The lesson of quantum theory. Boer, J. de, Dal, E., Ulfbeck, O. (eds.), Amsterdam: North Holland 1986Google Scholar
  2. 2.
    Kappes, M.M., Radi, P., Schär, M., Schumacher, E.: Chem. Phys. lett.119, 11 (1985)Google Scholar
  3. 3.
    Thomson, W.: In: Mackay, A.L.: The harvest of a quiet eye. London: The Institute of Physics 1977Google Scholar
  4. 4.
    Robbins, E.J., Leckenby, R.E., Willis, P.: Adv. Phys.16, 739 (1967)Google Scholar
  5. 5.
    Snider, D.R., Sorbello, R.S.: Surf. Sci.143, 204 (1984)Google Scholar
  6. 6.
    Klots, C.E.: J. Phys. Chem.92, 5864 (1988)Google Scholar
  7. 7.
    Klots, C.E.: J. Chem. Phys.90, 4470 (1989)Google Scholar
  8. 8.
    Klots, C.E.: Z. Phys. D — Atoms, Molecules, and Clusters20, 105 (1991)Google Scholar
  9. 9.
    Klots, C.E.: Nature327, 222 (1987)Google Scholar
  10. 10.
    Klots, C.E.: Int. J. Mass Spectrom. Ion Phys.100, 457 (1990)Google Scholar
  11. 11.
    Lifshitz, C., Louage, F.: J. Phys. Chem.93, 5633 (1989)Google Scholar
  12. 12.
    Wei, S., Tzeng, W.B., Castleman, A.W.: J. Chem. Phys.93, 2506 (1990)Google Scholar
  13. 13.
    Klots, C.E.: Z. Phys. D — Atoms, Molecules, and Clusters5, 83 (1987)Google Scholar
  14. 14.
    Radi, P.P., Hus, M.-T., Rincon, M.E., Kemper, P.R., Bowers, M.T.: Chem. Phys. Lett.174, 223 (1990)Google Scholar
  15. 15.
    Begemann, W., Meiwes-Broer, K.H., Lutz, H.O.: Phys. Rev. Lett.56, 2248 (1986)Google Scholar
  16. 16.
    Zheng, L.S., Karner, C.M., Brucat, P.J., Yang, S.H., Pettiette, C.L., Craycraft, M.J., Smalley, R.E.: J. Chem. Phys.85, 1681 (1986)Google Scholar
  17. 17.
    Ervin, K., Ho, J., Lineberger, W.C.: J. Chem. Phys.89, 4514 (1988)Google Scholar
  18. 18.
    Selected values of the thermodynamic properties of the elements. Hultman, R., et al. (eds.), Am. Soc. Metals, Metals Park, Ohio 1973Google Scholar
  19. 19.
    Radi, P.P., Hsu, M.-T., Brodbelt-Lustig, J., Bowers, M.T.: J. Chem. Phys.92, 4817 (1990)Google Scholar
  20. 20.
    Bowers, M.T.: Private communicationGoogle Scholar
  21. 21.
    Campbell, E.E.B., Ulmer, G., Busmann, H.-G., Hertel, I.V.: Chem. Phys. Lett.175, 505 (1990)Google Scholar
  22. 22.
    Engelking, P.C.: J. Chem. Phys.85, 3130 (1986);87, 936 (1987)Google Scholar
  23. 23.
    Stace, A.J.: Private communicationGoogle Scholar
  24. 24.
    Waage, E.V., Rabinovitch, B.S.: Chem. Revs.70, 377 (1970)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • C. E. Klots
    • 1
  1. 1.Chemical Physics Section, Health and Safety Research DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations