Abstract
LetA be a finite dimensional associative algebra over the fieldF whereF is a finite (algebraic) extension of the function fieldF q(X 1,...,X m). Here Fq denotes the finite field ofq elements (q=pl for a primep). We address the problem of computing the Jacobson radical Rad (A) ofA and the problem of computing the minimal ideals of the radical-free part (Wedderburn decomposition). The algebraA is given by structure constants overF andF is given by structure constants overF q(X 1,...,X m). We give algorithms to find these structural components ofA. Our methods run in polynomial time ifm is constant, in particular in the casem=1. The radical algorithm is deterministic. Our method for computing the Wedderburn decomposition ofA uses randomization (for factoring univariate polynomials overF q).
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bastida, J. R.: Field Extensions and Galois Theory. Rota, G.-C. (ed.): Encyclopedia of Mathematics and Its Applications, Vol. 22. Cambridge, New York, Melbourne: Cambridge University Press and Addison-Wesley 1984
Berlekamp, E. R.: Factoring polynomials over large finite fields. Math. Computation24, 713–715 (1970)
Eberly, W.: Computations for algebras and group representations. Ph.D. Thesis, Department of Computer Science, University of Toronto, Canada, 1989
Eberly, W.: Decomposition of algebras over finite fields and number fields. Computational Complexity1, 179–206 (1991)
Friedl, K., Rónyai, L.: Polynomial time solution of some problems in computational algebra. In: Proc. 17th ACM STOC, Providence, RI, 1985, 153–162. New York: ACM 1985
Gianni, P., Miller, V. Trager, B.: Decomposition of algebras. In: Proc. of ISSAC 1988, Rome, 300–308. Goos, G., Hartmanis, J. (ed.): Lecture Notes in Computer Science, Vol. 358. Berlin, Heidelberg, New York: Springer 1988
Herstein, I. N.: Noncommutative rings. Carus Math. Monographs, No. 15. New York: Mathematical Association of America, 1968
Kertész, A.: Lectures on Artinian rings. Budapest: Akadémiai Kiadó 1987
Pierce, R. S.: Associative algebras. Graduate Texts in Mathematics, No. 88. Berlin, Heidelberg, New York: Springer 1982
Reiner, I.: Maximal Orders. L. M. S. Monographs, No. 5. London, New York: Academic Press 1975
Rónyai, L.: Computing the structure of finite algebras. J. Symbolic Computation9, 355–373 (1990)
Schwartz, J. T.: Fast probabilistic algorithms for verification of polynomial identities. J. ACM27, 701–717 (1980)
Author information
Authors and Affiliations
Additional information
Research partially supported by Hungarian National Foundation for Scientific Research (OTKA), Grants 2581, F4116 and EC Cooperative Action IC 1000 (ALTEC).
Rights and permissions
About this article
Cite this article
Ivanyos, G., Rónyai, L. & Szántó, Á. Decomposition of algebras overF q (X 1,...,X m ). AAECC 5, 71–90 (1994). https://doi.org/10.1007/BF01438277
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01438277