Skip to main content
Log in

Retardation (Casimir) energy shifts for Rydberg helium-like low-Z ions

An exploratory study

  • Original Contributions
  • Published:
Zeitschrift für Physik D Atoms, Molecules and Clusters

Abstract

The development of storage rings and electromagnetic traps for heavy charged particles is opening up new regimes of atomic physics, including, in particular, spectroscopic studies of Rydberg helium-like ions — with nuclear chargeZ, one electron in the 1s state, and one electron in a near-hydrogenic state of highn andl <n, withn andl the principal and orbital quantum numbers, respectively. We consider the possibility of detecting energy shifts due to retardation, ΔE ret (n,l), Casimir-like effects. These are quantum electrodynamic (QED) retardation effects associated with the finite speed of light. (As opposed to basically kinematic and dynamic QED effects for small quantum numbersn andl, the appropriate expansion parameter forn andl large for retardation QED corrections is notZ(e 2c) but [(Z − 1)/n 2 Z 2](ħc/e 2).) We wish to provide some orientation to those planning experiments in the area, with regard to the choices ofn,l, andZ most likely to be able to generate a high-precision confirmation of a retarded interaction. To do so, we provide extensive tables of estimates, for 1s,nl states, of ΔE ret(n,l), of radiative widths, and ofE, the spin-independent (“electric” fine structure) energy in the absence of retardation shifts, for (nuclear spin zero) ions withZ=2, 6, 8, 16 and 20. These ions might be experimentally accessible in storage rings, and theZ's are low enough that virtual pair production effects may not yet be significant. There is also a brief survey of possible experimental techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Habs, D., et al.: Nucl. Instrum. Methods B43, 390 (1989)

    Google Scholar 

  2. Datz, S.: Nucl. Instrum. Methods B24, 3 (1987)

    Google Scholar 

  3. Schuch, R.: Nucl. Instrum. Methods B24, 11 (1987)

    Google Scholar 

  4. Martinson, I.: Rep. Prog. Phys.52, 157 (1989)

    Google Scholar 

  5. Kelsey, E.J., Spruch, L.: Phys. Rev. A18, 15 (1978)

    Google Scholar 

  6. Babb, J.F., Spruch, L.: Phys. Rev. A36, 456 (1987);38, 13 (1988)

    Google Scholar 

  7. Drachmann, R.J.: Phys. Rev. A31, 1253 (1985);26, 1228 (1982)

    Google Scholar 

  8. Drake, G.W.F.: Phys. Rev. Lett.65, 2769 (1990); States up ton=10,l=7 for He have been studied. See also: Drake, G.W.F.: In: Long range forces: Theory and recent experiments in atomic systems. Levin, F.S., Micha, D. (eds.). New York: Plenum Press 1992

    Google Scholar 

  9. Spruch, L.: Phys. Today39 (11), 37 (1986). This improves on the arguments of Spruch, L., Kelsey, E.J.: Phys. Rev. A18, 845 (1978)

    Google Scholar 

  10. Feinberg, G., Sucher, J., Au, C.K.: Ann. Phys. (N.Y.)173, 355 (1987)

    Google Scholar 

  11. Martin, W.C.: Phys. Scr.24, 725 (1981)

    Google Scholar 

  12. Physically, retardation is significant when a characteristic time of flight of a virtual photon is comparable to or larger than the period of the 1s electron. Mathematically, withE exc a characteristic excitation energy of the 1s electron and withE γ a characteristic energy of a virtual photon, one hasE exc/E γ ≈ αZ ≪ 1 for a helium atom or a low-Z two-electron ion in a low-lying state, andE γ/E exc ≈ (Z − 1)/(n 2αZ 2) ≪ 1 for sufficiently high Rydberg states. See Spruch, L., Babb, J.F.: In: Spectroscopy and collisions of few-electron ions. Ivascu, M., Florescu, V., Zoran, V. (eds.). Singapore: World Scientific 1989. In treating terms such as 1/(E exc +E γ), one then expands in powers ofE exc/E γ in the one case and in powers ofE γ/E exc in the other

  13. Aldridge, J.P., Skofronick, J.G.: Phys. Rev. Lett.28, 529 (1972)

    Google Scholar 

  14. Hessels, E.A., Deck, F.J., Arcuni, P.W., Lundeen, S.R.: Phys. Rev. Lett.65, 2765 (1990);66, 2544E (1991)

    Google Scholar 

  15. Lundeen, S.R.: In: Atomic physics. Vol. 12, Zorn, J.C., Lewis, R.R. (eds.). New York: American Institute of Physics 1991

    Google Scholar 

  16. Chang, E.S.: Phys. Rev. A31, 495 (1985)

    Google Scholar 

  17. Afanaseva, N.V., Grudzdev, P.F.: Opt. Spektrosk.55, 416 (1983) [Opt. Spectrosc. (USSR)55, 245 (1983)]

    Google Scholar 

  18. Marxer, H., Spruch, L.: Phys. Rev. A43, 1268 (1991)

    Google Scholar 

  19. Drake, G.W.F.: J. Phys. B22, L651 (1989); Goldman, S.P., Drake, G.W.F.: Phys. Rev. Lett.68, 1683 (1992)

  20. Sugar, J., Corliss, C.: J. Phys. Chem. Ref. Data. [Suppl. 2]14, 9 (1985)

    Google Scholar 

  21. Moore, C.E.: Natl. STand. Ref. Data Ser. Natl. Bur. Stand.3, Sec. 8 (1979)

  22. Martin, W.C., Zalubas, R., Musgrove, A.: J. Phys. Chem. Ref. Data19, 821 (1990)

    Google Scholar 

  23. Au, C.K., Feinberg, G., Sucher, J.: Phys. Rev. Lett.53, 1145 (1984), and references therein. For an alternative derivation see [6]

    Google Scholar 

  24. Au, C.K.: Phys. Rev. A31, 1310 (1985)

    Google Scholar 

  25. Kelsey, E.J., Spruch, L.: Phys. Rev. A18, 1055 (1978)

    Google Scholar 

  26. Mittleman, M.H., Watson, K.M.: Phys. Rev.113, 198 (1959); Kleinman, C.J., Hahn, Y., Spruch, L.: ibid.165, 53 (1968); Dalgarno, A., Drake, G.W.F., Victor, G.A.: ibid.176, 194 (1968)

    Google Scholar 

  27. Bethe, H.A., Salpeter, E.E.: Quantum mechanics of one- and two-electron atoms. New York: Academic Press 1957

    Google Scholar 

  28. Omidvar, K.: At. Data Nucl. Data Tables28, 1 (1983)

    Google Scholar 

  29. Omidvar, K.: Phys. Rev. A26, 3053 (1982)

    Google Scholar 

  30. Goldwire, H.C.: Astrophys. J. [Suppl. Ser.]17, 445 (1968)

    Google Scholar 

  31. Neumann, R., Poth, H., Winnacker, A., Wolf, A.: Z. Phys. A — Atoms and Nuclei313, 253 (1983)

    Google Scholar 

  32. Schramm, U., Berger, J., Grieser, M., Habs, D., Jaeschke, E., Kilgus, G., Schwalm, D., Wolf, A., Neumann, R., Schuch, R.: Phys. Rev. Lett.67, 22 (1991)

    Google Scholar 

  33. Omidvar, K., Guimaraes, P.T.: Astrophys. J. [Suppl. Ser.]73, 555 (1990)

    Google Scholar 

  34. Bell, M., Bell, J.S.: Part. Accel.12, 49 (1982)

    Google Scholar 

  35. Habs, D., Kramp, J., Krause, P., Matl, K., Neumann, R., Schwalm, D.: Phys. Scr. T22, 269 (1988)

    Google Scholar 

  36. Marrus, R., Mohr, P.J.: Adv. At. Mol. Phys.14, 181 (1978)

    Google Scholar 

  37. Bockasten, K.: Phys. Rev. A9, 1087 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babb, J.F., Habs, D., Spruch, L. et al. Retardation (Casimir) energy shifts for Rydberg helium-like low-Z ions. Z Phys D - Atoms, Molecules and Clusters 23, 197–209 (1992). https://doi.org/10.1007/BF01437395

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01437395

PACS

Navigation