Skip to main content
Log in

Spin symmetry and gel'fand patterns of higher SU2× n groups

Application of inner tensor product algebra and 5 5C 4v mapping in deriving the MQ-NMR spin substructure ofnido-11 B 5 H 9

  • Original Contributions
  • Published:
Zeitschrift für Physik D Atoms, Molecules and Clusters

Abstract

The nature of 5 spin algebra is considered together with 5 5C 4v mapping in order to specify the dual spin symmetry for MQ-NMR ofnido-11B5H9. The forms of Gel'fand shapes for 5 spin symmetry are presented to show how they specify thefull range of multiplicities found in higher-n n -partitions. Tuples, or number-partitions and their n G invariance sets provide models for both the five-foldI i =3/2 component, and the two distinct types of spin-1/2 subsystems. The full spin symmetry is derived in terms of the direct product (( 5C 4v )⊗( 4C 4v ))1/2⊗( 5C 4v )3/2. The concepts used are implicit in the substructure ofp-tuple model invariances over the subduced symmetry, or derive from the inner tensor product algebras under the n group. Both as a check on the combinatorially derived multiplicities of [λ]s and for insight into (non-simply-reducible) substructure of number-partitions, the study of mapping from :hrr'.:-tuples onto the n -partitional set for higherI i is invaluable. The motivation for this work lies in its pertinence to the MQ-NMR spin dynamics of clusterlike molecules. The accessible information content of a spin algebra over either form of spin space is bound up with a suitable symmetry partitioning of the problem, as implied by the use of {T kq(v:[λ])} bases within higherq subspaces of the Liouville formalism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Coleman, A.J.: Adv. Quantum Chem.4, 83 (1968)

    Google Scholar 

  2. Golembiowsky, A.: see Appendix compilations in [11] below

  3. Zia-ud-Din, M.: Proc. Lond. Math. Soc.42, 340 (1936)

    Google Scholar 

  4. Liu, X., Balasubramanian, K.: J. Comput. Chem.10, 417 (1989)

    Google Scholar 

  5. Kaplan, I.: Symmetry of many-electron systems. [Transl. from Russian, Gerratt, J.R. (ed.)]. London: Academic Press 1975

    Google Scholar 

  6. Paldus, J., Li, X.: Int. J. Quantum Chem.56, 127 (1989) (et loc. cit.).; Chisholm, C.: Group theoretic techniques in quantum chemistry. London: Academic Press 1978

    Google Scholar 

  7. Biedenharn, L.C., Louck, J.D.: In: The permutation group in physics and chemistry. Lecture Notes in Chemistry. Hinze, J. (ed.), vol. 12. Berlin, Heidelberg, New York: Springer 1979; Idem: Angular momentum in quantum mechanics. Encyclopedia Math, vol. 8. Reading, Mass.: Addison-Wesley 1981; Idem: Wigner-Racah algebra. Encyclopedia Math. vol. 9. Reading, Mass.: Addison-Wesley 1984

    Google Scholar 

  8. Sanctuary, B.C., Halstead, T.K.: Advances in optical and magnetic resonance, vol. 15 (et loc. cit.). Orlando: Academic Press 1991

    Google Scholar 

  9. Temme, F.P.: J. Math. Phys.32, 1638 (1991); Temme, F.P., Colpa, J.P.: Z. Phys. B — Condensed Matter (in press)

    Google Scholar 

  10. Littlewood, D.E.: Theory of group characters and representations of groups. 2nd ed. Oxford: Oxford University Press 1950

    Google Scholar 

  11. James, G., Kerber, A.: Representations of the symmetric group. Encyclopedia Math. Vol. 16. Reading, Mass.: Addison-Wesley 1985

    Google Scholar 

  12. Balasubramanian, K.: J. Chem. Phys.78, 6358 (1983); Idem. ibid.73, 4421 (1980)

    Google Scholar 

  13. Balasubramanian, K.: Theoret. Chim. Acta78, 31 (1990); Longuet-Higgins, H.C.: Mol. Phys.6, 445 (1963)

    Google Scholar 

  14. Colpa, J.P., Temme, F.P.: In: Proc. Congress AMPERE-XXV, p. 681. Stuttgart 1990

  15. Wei, S., Shi, Z., Castleman, A.W.: J. Chem. Phys.94, 3268 (1991)

    Google Scholar 

  16. Deizemann, G., Sillescu, H., Putten, D. v-d: Z. Phys. B — Condensed Matter83, 245 (1991)

    Google Scholar 

  17. Sanctuary, B.C., Temme, F.P.: Mol. Phys.55, 1049 (1985) Temme, F.P.: Chem. Phys.132, 9 (1989)

    Google Scholar 

  18. Temme, F.P.: J. Magn. Reson.83, 383 (1989); Temme, F.P., Colpa, J.P.: Mol. Phys.73, 953 (1991)

    Google Scholar 

  19. Hausler, W.: Z. Phys. B — Condensed Matter81, 265 (1991)

    Google Scholar 

  20. Press, W.: Single-particle rotation in molecular crystals. Springer Tracks in Modern Physics, vol. 92. Berlin, Heidelberg, New York: Springer 1982

    Google Scholar 

  21. Berge, C.: Principles of combinatorics. Paris, London: Dunod Academic Press 1965/71

    Google Scholar 

  22. Andrews, G.: Theory of number partitions. Reading, Mass.: Addison-Wesley 1976

    Google Scholar 

  23. Temme, F.P.: Physica A166, 676 (1990); Z. Phys. B — Condensed Matter (in press)

    Google Scholar 

  24. Temme, F.P.: PhysicaA166, 685 (1990)

    Google Scholar 

  25. Temme, F.P., Colpa, J.P.: Chem. Phys.154, 97, 110 (1991)

    Google Scholar 

  26. Doubilet, P., Rota, G.-C., Stein, J.: Stud. Appl. Math.53, 183 (1974)

    Google Scholar 

  27. Housecroft, C.: Boranes and metalloboranes. Chichester: Ellis-Horwood 1989

    Google Scholar 

  28. Temme, F.P.: Mol. Phys.66, 1075 (1989)

    Google Scholar 

  29. Corio, P.L.: Structure of high-resol. NMR spectra. New York: Academic Press 1966

    Google Scholar 

  30. Listerud, J., Drobny, G.: Mol. Phys.67, 97 (1989)

    Google Scholar 

  31. Lacelle, S.: In: Advances in magnetic and optical resonances. Vol. 16. Orlando: Academic Press 1991

    Google Scholar 

  32. Temperley, H.M.V.: Graph theory and its application to statistical mechanics. Chichester: Ellis-Horwood 1982; Wilson, R.J.: Introduction to graph theory. London: Macmillan 1975

    Google Scholar 

  33. El Baz, E., Castel, B.: Graphical methods for spin algebra. New York: Dekker 1972

    Google Scholar 

  34. Tung, W.-G.: Group theory in physics. Singapore: World Scientific 1988

    Google Scholar 

  35. Elliot, J.P., Dawber, P.G.: Symmetry in physics, I, II. London: Macmillan 1979

    Google Scholar 

  36. Rota, G.-C.: Finite operator calculus. New York: Academic Press 1975; Rota, G.-C.: Graphes et hypergraphes. Paris: Dunod 1970

    Google Scholar 

  37. Balasubramanian, K.: J. Chem. Phys.95, 8273 (1991)

    Google Scholar 

  38. Temme, F.P., Colpa, J.P.: Z. Phys. D — Atoms, Molecules and Clusters23, 187 (1992)

    Google Scholar 

  39. Flurry, R.L., Siddall, T.H.: Group theory and the NMR problem. In: Physical applications of group theory, Dorini, I.C. (ed.). New York: Plenum Press 1979

    Google Scholar 

  40. Flurry, R.L., Siddall, T.H.: Phys. Rev. B31, 4153 (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Proceeding publication in series given as [25]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Temme, F.P., Colpa, J.P. Spin symmetry and gel'fand patterns of higher SU2× n groups. Z Phys D - Atoms, Molecules and Clusters 23, 187–193 (1992). https://doi.org/10.1007/BF01436743

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01436743

PACS

Navigation