, Volume 93, Issue 1–3, pp 13–26 | Cite as

IS231 and otherBacillus thuringiensis transposable elements: A review

  • J. Mahillon
  • R. Rezsöhazy
  • B. Hallet
  • J. Delcour


Bacillus thuringiensis is an entomopathogenic bacterium whose toxicity is due to the presence in the sporangia of δ-endotoxin crystals active against agricultural pests and vectors of human and animal diseases. Most of the genes coding for these toxin proteins are plasmid-borne and are generally structurally associated with insertion sequences (IS231, IS232, IS240, ISBT1 and ISBT2) and transposons (Tn4430 and Tn5401). Several of these mobile elements have been shown to be active and are believed to participate in the crystal gene mobility, thereby contributing to the variation of bacterial toxicity. Structural analysis of the iso-IS231 elements indicates that they are related to IS1151 fromClostridium perfringens and distantly related to IS4 and IS186 fromEscherichia coli. Like the other IS4 family members, they contain a conserved transposase-integrase motif found in other IS families and retroviruses. Moreover, functional data gathered from IS231 A inEscherichia coli indicate a non-replicative mode of transposition, with a marked preference for specific targets. Similar results were also obtained inBacillus subtilis andB. thuringiensis, and a working model for DNA-protein interactions at the target site is proposed.

Key words

Bacillus thuringiensis insertion sequences retrovirus Tn4430 transposase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, L. F., J. E. Visick & H. R. Whiteley, 1989. A 20-kilodalton protein is required for efficient production of theBacillus thuringiensis subsp.israelensis 27-kilodalton crystal protein inEscherichia coli. J. Bacteriol. 171: 521–530.PubMedGoogle Scholar
  2. Ahmad, W., C. Nicholls & D. J. Ellar, 1989. Cloning and expression of an entomocidal protein gene fromBacillus thuringiensis galleriae toxic to both lepidoptera and diptera. FEMS Microbiol. Lett. 59: 197–202.Google Scholar
  3. Aronson, A. I., 1993. The two faces ofBacillus thuringiensis: insecticidal proteins and post-exponential survival. Mol. Microbiol. 7: 489–496.PubMedGoogle Scholar
  4. Baum, J., 1994. Tn5401: a new class II transposable element fromBacillus thuringiensis. J. Bacteriol. 176: 2835–2845.PubMedGoogle Scholar
  5. Beese, L. S. & T. A. Steitz, 1991. Structural basis for the 3′–5′ exonuclease activity ofEscherichia coli DNA polymerase I: a two metal ion mechanism. EMBO J. 10: 25–33.PubMedGoogle Scholar
  6. Bender, J. & N. Kleckner, 1992. Tn10 insertion specificity is strongly dependent upon sequences immediately adjacent to the targetsite consensus sequence. Proc. Natl. Acad. Sci. USA 89: 7996–8000.PubMedGoogle Scholar
  7. Bourgouin, C., A. Delécluse, J. Ribier, A. Klier & G. Rapoport, 1988. ABacillus thuringiensis gene encoding a 125-kilodalton larvicidal polypeptide is associated with inverted repeat sequences. J. Bacteriol. 170: 3575–3583.PubMedGoogle Scholar
  8. Carlson, C. R., D. Caugant & A.-B. Kolstø, 1994. Genotypic diversity amongBacillus cereus andBacillus thuringiensis strains. Appl. Environ. Microbiol. 60: 1719–1725.Google Scholar
  9. Carlson, C. R. & A.-B. Kolstø, 1993. A complete physical map of aBacillus thuringiensis chromosome. J. Bacteriol. 175: 1053–1060.PubMedGoogle Scholar
  10. Chalker, D. L. & S. D. Sandmeyer, 1992. Ty3 integrates within the region of RNA polymerase III transcription initiation. Gene Dev. 6: 117–128.PubMedGoogle Scholar
  11. Chong, P., I. Hui, T. Loo & S. Gilliam, 1985. Structural analysis of a new GC-specific insertion element IS186. FEBS Lett. 192: 47–52.PubMedGoogle Scholar
  12. Craig, N., 1991. Tn7: a target site-specific transposon. Mol. Microbiol. 5: 2569–2573.PubMedGoogle Scholar
  13. Daube, G., P. Simon & A. Kaeckenbeeck, 1993. IS1151, an IS-like element ofClostridium perfringens. Nucleic Acids Res. 21: 352.PubMedGoogle Scholar
  14. Delécluse, A., C. Bourgouin, A. Klier & Rapoport, 1989. Nucleotide sequence and characterization of a new insertion element, IS240, fromBacillus thuringiensis israelensis. Plasmid 21: 71–78.PubMedGoogle Scholar
  15. Delécluse, A., C. Bourgouin, G. Menou, D. Lereclus, A. Klier & G. Rapoport, 1990. IS240 associated with the cryIVA gene fromBacillus thuringiensis israelensis belongs to a family of Gram(+) and Gram(−) IS elements, pp. 181–190 in Genetics and Biotechnology of Bacilli, Vol. 3, edited by M. M. Zukowski, A. T. Ganesan and J. A. Hoch. Academic Press, San Diego, CA.Google Scholar
  16. Delécluse, A., J.-F. Charles, A. Klier & G. Rapoport, 1991. Deletion by in vivo recombination shows that the 28-kilodalton cytolytic polypeptide fromBacillus thuringiensis subsp.israelensis is not essential for mosquitocidal activity. J. Bacteriol. 173: 3374–3381.PubMedGoogle Scholar
  17. Derbyshire, V., N. D. F. Grindley & C. M. Joyce, 1991. The 3′–5′ exonuclease of DNA polymerase I ofEscherichia coli: contribution of each amino acid at the active site of the reaction. EMBO J. 10: 17–24.PubMedGoogle Scholar
  18. Doak, T. G., F. P. Doerder, C. L. Jahn & G. Herrick, 1994. A family of transposase genes in transposons found in prokaryotes, multicellular eukaryotes and ciliated protozoans. Proc. Natl. Acad. Sci., USA 91: 942–946.Google Scholar
  19. Entwistle, P. F., J. S. Cory, M. J. Bailey & S. Higgs, 1993.Bacillus thuringiensis, an environmental biopesticide: theory and practice. J. Wiley & Sons, Chichester, England.Google Scholar
  20. Fayet, O., P. Ramond, P. Polard, M.-F. Prère & M. Chandler, 1990. Functional similarities between retroviruses and the IS3 family of bacterial insertion sequences? Mol. Microbiol. 4: 1771–1777.PubMedGoogle Scholar
  21. Gamel, P. H. & J.-C. Piot, 1992. Characterization and properties of a novel plasmid vector forBacillus thuringiensis displaying compatibility with host plasmids. Gene 120: 17–26.PubMedGoogle Scholar
  22. Gelernter, W. & G. E. Schwab, 1993. Transgenic bacteria, viruses, algae and other microorganisms asBacillus thuringiensis toxin delivery systems, pp. 89–104 inBacillus thuringiensis, an environmental biopesticide: theory and practice, edited by P. F. Entwistle, J. S. Cory, M. J. Bailey and S. Higgs. J. Wiley & Sons, Chichester, England.Google Scholar
  23. González, J. M., Jr., B. J. Brown & B. C. Carlton, 1982. Transfer ofBacillus thuringiensis plasmids coding for δ-endotoxin among strains ofB. thuringiensis andB. cereus. Proc. Natl. Acad. Sci. USA 79: 6951–6955.PubMedGoogle Scholar
  24. Green, B. D., L. Battisti & C. B. Thorne, 1989. Involvement of Tn4430 in transfer ofBacillus anthracis plasmids mediated byBacillus thuringiensis plasmid pXO12. J. Bacteriol. 171: 104–113.PubMedGoogle Scholar
  25. Hallet, B., R. Rezsöhazy & J. Delcour, 1991. IS231 A fromBacillus thuringiensis is functional inEscherichia coli: transposition and insertion specificity. J. Bacteriol. 173: 4526–4529.PubMedGoogle Scholar
  26. Hallet, B., R. Rezsöhazy, J. Mahillon & J. Delcour, 1994. IS231 A insertion specificity: consensus sequence and DNA bending at the target site. Mol. Microbiol. 13 (in press).Google Scholar
  27. Hodgman, T. C., Y. Ziniu, J. Shen & D. J. Ellar, 1993. Identification of a cryptic gene associated with an insertion sequence not previously identified inBacillus thuringiensis. FEMS Microbiol. Lett. 114: 23–30.PubMedGoogle Scholar
  28. Höfte, H. & H. R. Whiteley, 1989. Insecticidal crystal proteins ofBacillus thuringiensis. Microbiol. Rev. 53: 242–255.PubMedGoogle Scholar
  29. Ji, H., D. P. Moore, M. A. Blomberg, L. T. Braiterman, D. F. Voytas, G. Natsoulis & J. D. Boeke, 1993. Hotspots for unselected Ty1 transposition events on yeast chromosome III are near tRNA genes and LTR sequences. Cell 73: 1007–1018.PubMedGoogle Scholar
  30. Khan, E., J. P. G. Mack, R. A. Katz, J. Kulkosky & A. M. Skalka, 1991. Retroviral integrase domains: DNA binding and the recognition of LTR sequences. Nucleic Acids Res. 19: 851–860.PubMedGoogle Scholar
  31. Klaer, R., S. Kühn, E. Tillman, H.-J. Fritz & P. Starlinger, 1981. The sequence of IS4. Mol. Gen. Genet. 181: 169–175.PubMedGoogle Scholar
  32. Kleckner, N., 1989. Transposon Tn10, pp. 227–268 in Mobile DNA, edited by D. E. Berg and M. M. Howe. American Society for Microbiology, Washington, D.C.Google Scholar
  33. Kothary, R. K., D. Jones & E. P. M. Candido, 1985. IS186: anEscherichia coli insertion element isolated from a cDNA library. J. Bacteriol. 164: 957–959.PubMedGoogle Scholar
  34. Kronstad, J. W. & H. R. Whiteley, 1984. Inverted repeat sequences flank aBacillus thuringiensis crystal protein gene. J. Bacteriol. 160: 95–102.PubMedGoogle Scholar
  35. Kronsad, J. W. & H. R. Whiteley, 1986. Three classes of homologousBacillus thuringiensis crystal-protein genes. Gene 43: 29–40.PubMedGoogle Scholar
  36. Kulkosky, J., K. S. Jones, R. A. Katz, J. P. G. Mack & A. M. Skalka, 1992. Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial Insertion Sequence transposases. Mol. Cell. Biol. 12: 2331–2338.PubMedGoogle Scholar
  37. Lereclus, D., A. Delécluse & M.-M. Lecadet, 1993. Diversity ofBacillus thuringiensis toxins and genes, pp. 37–69 inBacillus thuringiensis, an environmental biopesticide: theory and practice, edited by P. F. Entwistle, J. S. Cory, M. J. Bailey and S. Higgs. J. Wiley & Sons, Chichester, England.Google Scholar
  38. Lereclus, D., S. Guo, V. Sanchis & M.-M. Lecadet, 1988. Characterization of twoBacillus thuringiensis plasmids whose replication is thermosensitive inB. subtilis. FEMS Microbiol. Lett. 49: 417–422.Google Scholar
  39. Lereclus, D., J. Mahillon, G. Menou & M.-M. Lecadet, 1986. Identification of Tn4430, a transposon ofBacillus thuringiensis functional inEscherichia coli. Mol. Gen. Genet. 204: 52–57.PubMedGoogle Scholar
  40. Lereclus, D., G. Menou & M.-M. Lecadet, 1983. Isolation of a DNA sequence related to several plasmids fromBacillus thuringiensis after a mating involving theStreptococcus faecalis pAMß1. Mol. Gen. Genet. 191: 307–313.PubMedGoogle Scholar
  41. Lereclus, D., J. Ribier, A. Klier, G. Menou & M.-M. Lecadet, 1984. A transposon-like structure related to the δ-endotoxin gene ofBacillus thuringiensis. EMBO J. 3: 2561–2567.PubMedGoogle Scholar
  42. Lereclus, D., M. Vallade, J. Chaufaux, O. Arantes & S. Rambaud, 1992. Expansion of insecticidal host range ofBacillus thuringiensis by in vivo genetic recombination. Biotechnology 10: 418–421.PubMedGoogle Scholar
  43. Mahillon, J., F. Hespel, A.-M. Pierssens & J. Delcour, 1988. Cloning and partial characterization of three small cryptic plasmids fromBacillus thuringiensis. Plasmid 19: 169–173.PubMedGoogle Scholar
  44. Mahillon, J. & D. Lereclus, 1988. Structural and functional analysis of Tn4430: identification of an integrase-like protein involved in the co-integrate-resolution process. EMBO J. 7: 1515–1526.PubMedGoogle Scholar
  45. Mahillon, J. & J. Seurinck, 1988. Complete nucleotide sequence of pGI2, aBacillus thuringiensis plasmid containing Tn4430. Nucleic Acids Res. 16: 11827–11828.PubMedGoogle Scholar
  46. Mahillon, J., J. Seurinck, J. Delcour & M. Zabeau, 1987. Cloning and nucleotide sequence of different iso-IS231 elements and their structural association with the Tn4430 transposon inBacillus thuringiensis. Gene 51: 187–196.PubMedGoogle Scholar
  47. Mahillon, J., J. Seurinck, L. Van Rompuy, J. Delcour & M. Zabeau, 1985. Nucleotide sequence and structural organization of an insertion sequence element (SI231) fromBacillus thuringiensis strain berliner 1715. EMBO J. 4: 3895–3899.PubMedGoogle Scholar
  48. Menou, G., J. Mahillon, M.-M. Lecadet & D. Lereclus, 1990. Structural and genetic organization of IS232, a new insertion sequence ofBacillus thuringiensis. J. Bacteriol. 172: 6689–6696.PubMedGoogle Scholar
  49. Mizuuchi, K., 1992. Polynucleotidyl transfer reactions in transpositional DNA recombination. J. Biol. Chem. 267: 21273–21276.PubMedGoogle Scholar
  50. Mollet, B., S. Iida, J. Sepherd & W. Arber, 1983. Nucleotide sequence of IS26, a new prokaryotic mobile genetic element. Nucleic Acids Res. 11: 6319–6330.PubMedGoogle Scholar
  51. Polard, P., M.-F. Prère, M. Chandler & O. Fayet, 1991. Programmed translational frameshifting and initiation at an AUU codon in gene expression of bacterial insertion sequence IS911. J. Mol. Biol. 222: 465–477.PubMedGoogle Scholar
  52. Rezsöhazy, R., B. Hallet & J. Delcour, 1992. IS231 D, E and F, three new insertion sequences inBacillus thuringiensis: extension of the IS231 family. Mol. Microbiol. 6: 1959–1967.PubMedGoogle Scholar
  53. Rezsöhazy, R., B. Hallet, J. Delcour & J. Mahillon, 1993a. The IS4 family of insertion sequences: evidence for a conserved transposase motif. Mol. Microbiol. 9: 1283–1295.PubMedGoogle Scholar
  54. Rezöhazy, R., B. Hallet, J. Mahillon & J. Delcour, 1993b. IS231 V and W fromBacillus thuringiensis subsp.israelensis, two distant members of the IS231 family of insertion sequences. Plasmid 30: 141–149.PubMedGoogle Scholar
  55. Ryan, M., J. D. Johnson & L. A. Bulla, Jr., 1993. Insertion sequence elements inBacillus thuringiensis subsp.darmstadiensis. Can. J. Microbiol. 39: 649–658.PubMedGoogle Scholar
  56. Sanchis, V., D. Lereclus, G. Menou, J. Chaufaux & M.-M. Lecadet, 1988. Multiplicity of δ-endotoxin genes with different insecticidal specificities inBacillus thurnngiensis aizawai 7.29. Mol. Microbiol. 2: 393–404.PubMedGoogle Scholar
  57. Schnepf, H. E. & H. R. Whiteley, 1981. Cloning and expression of theBacillus thuringiensis crystal protein gene inEscherichia coli. Proc. Natl. Acad. Sci. USA 78: 2893–2897.PubMedGoogle Scholar
  58. Sekine, Y. & E. Ohtsubo, 1989. Frameshifting is required for production of the transposase encoded by insertion sequence 1. Proc. Natl. Acad. Sci. USA 86: 4609–4613.PubMedGoogle Scholar
  59. Smith, G. P., D. J. Ellar, S. J. Keeler & C. E. Seip, 1994. Nucleotide sequence and analysis of an Insertion Sequence fromBacillus thuringiensis related to IS150. Plasmid (in press).Google Scholar
  60. Trieu-Cuot, P. & P. Courvalin, 1984. Nucleotide sequence of the transposable element IS15. Gene 30: 113–120.PubMedGoogle Scholar
  61. van Luenen, H. G. A. M. & R. H. A. Plasterk, 1994. Target site choice of the related transposable elements Tc1 and Tc3 ofCaenorhabditis elegans. Nucleic Acids Res. 22: 262–269.PubMedGoogle Scholar
  62. Vögele, K., E. Schwartz, C. Welz, E. Schiltz & B. Rak, 1991. Highlevel ribosomal frameshifting directs the synthesis of IS150 gene products. Nucleic Acids Res. 19: 4377–4385.PubMedGoogle Scholar
  63. Weiss, R. B., D. M. Dunn, A. E. Dahlberg, J. F. Atkins & R. F. Gesteland, 1988. Reading frame switch caused by base-pair formation between the 3′ end of 16S rRNA and the mRNA during elongation of protein synthesis inEscherichia coli. EMBO J. 7: 1503–1507.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • J. Mahillon
    • 1
  • R. Rezsöhazy
    • 1
  • B. Hallet
    • 1
  • J. Delcour
    • 1
  1. 1.Unité de GénétiqueUniversité Catholique de LouvainLouvain-La-NeuveBelgium

Personalised recommendations